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3D scanning system, which could be
utilized for indoor mapping. The sys-
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tested in a real environment. Results
show that the developed piece of tech-
nology is able to successfully map its
surroundings by producing a compre-
hensible point cloud.
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Chapter 1

Introduction

1.1 Introduction

We live in a three-dimensional (3D) world where knowledge about the geometry
of physical structures is important from both an industrial and a societal point of
view. Architecture, construction, medicine and quality control are just a few exam-
ples of sectors that are heavily dependent on using highly precise measurements
regarding tangible structures on a regular basis. With the advancement of technol-
ogy, gaining access to this type of information became easier, as new solutions for
gathering data and generating a 3D digital model out of it emerged, in the form
of 3D scanning. In fact, the spectrum of applications of these new technologies be-
came more diverse as well. Modern archaeology, for instance, relies on the use of
these new solutions for heritage preservation and restoration. Yet another example
is represented by the gaming industry, which is utilizing the technology to confer
an impression of reality to the user. In the past decades, the other aforementioned
sectors turned to the use of digital solutions as well, for they bring the benefits of
increasing accuracy and decreasing costs [1, 2, 3, 4].

Collecting geometric data is thus a relevant requisite nowadays and the de-
mand for solutions is high. Out of the smorgasbord of 3D scanning techniques,
laser scanning presents itself as one of the most prominent ones. This report scru-
tinizes the aspects of 3D laser scanning by using different tools and narrows the
focus down to a particular application that can be accomplished by following the
identified technical specifications. It also delineates the process of developing a
solution, presenting the materials and methods utilized, as well as the implemen-
tation procedure, which illustrates how individual parts are combined into an elec-
tromechanical system, i.e., a 3D laser scanner. A conclusion is drawn in the end, as
a result of testing performed with the developed device.

1



2 Chapter 1. Introduction

1.2 Initiating Problem

On the basis of the aforementioned background, the following question initializes
the problem:

How can we obtain a three-dimensional digital model of a physical structure?



Chapter 2

Problem Analysis

2.1 Six Ws

In order to get started in the process of analyzing the problem, six essential ques-
tions were taken into consideration. Figure 2.1 provides a summary of this prelim-
inary examination.

PROBLEM

WHERE

Computer
games

Accident
scene

reconstruction

Architecture

HOW

WHAT

Digitizing a
physical
structure

WHO

Silviculturists

Game
developers

Police

Architects

WHY

Inaccuracy of
manual work 

Inefficiency of
manual work

Forestry

WHEN

Geometric data
about tangible

objects is
required

Using sensors
to acquire

geometric data

Figure 2.1: Six Ws Diagram
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4 Chapter 2. Problem Analysis

What is the problem?

In the professional sectors where the dimensions of the items of interest are rela-
tively short, the usual way is to measure an object or space manually in order to
analyze its physical structure. That entails spending human resources on a low-
complexity task, therefore increasing costs and time elapsed for a certain project.

Where does the problem occur?

A large variety of environments, both natural and artificial, can be digitized with
interesting applications in architecture, computer game development or forestry [5,
6]. For instance, in architecture, digitization can be useful for analyzing the stability
and conservation state of old buildings or to optimize the process of redecorating
a house [7].

When does the problem occur?

Every time it is needed to analyze or measure a three-dimensional space for any
purpose, digitization can prove useful.

Who does the problem affect?

The spectrum of people affected includes professionals of different fields: archi-
tects, game developers or silviculturists.

Why does the problem occur?

Making a map based on manual drawings and measurements can be a hard and
tedious task.

How can the problem be solved?

In order to get a digital representation of certain structures, the most logical way
is to use sensors that can obtain the shape of a solid object in front of them. The
sensor readings will give a number of points and, after a sufficient amount of
readings are performed, while changing the position of the sensor if necessary, a
point cloud can be obtained.

2.2 Structures of Interest

As it was seen in the foregoing sections, information about the geometry of tan-
gible structures is valuable in many fields. However, making a complete analysis
encompassing all the cases in which this information is used for a particular pur-
pose would be a laborious task. For this reason, certain application sectors shall be
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discarded from the very beginning of this project and thus the analysis will focus
only on a smaller range of uses.

A very crude classification of the structures whose geometric data is needed in
a digital format can be made by following a dimension criterion. On the one hand,
there are the (relatively) small objects, category that includes artefacts or human
body parts [8]. On the other hand, there are the much larger structures, such
as terrain or buildings [9, 10]. Even though working with both categories entails
interesting applications and deals with problems that affect different stakeholders,
it was decided to carry the analysis solely on the latter, that is, transforming a large
physical structure into digital format. Examples of applications concerning such
structures will be mentioned in Section 2.4.

Now that it is known which objects fit the scope of this project, it is time to
look into possible ways the required data could be gathered and transferred to the
digital world.

One can argue that measurements of a structure could be taken manually - with
a tape measure, for example - and then a digital model based on the measurements
could be made with the aid of CAD software. While this is certainly possible, it is
not a viable solution, since it is time consuming, as S. Klimoski stated in a 2006 re-
port dedicated to modeling the interior of a theater in Minnesota with the objective
of renovating it. He estimated that, if the work had been done manually, it would
have taken 4 people around 12 weeks to perform the task. With the use of tech-
nology, however, the project required only 2 weeks and 2 workers for completion
[10]. This brings into discussion a very important aspect: a piece of equipment
able to take measurements of a given structure automatically by performing 3D
data acquisition.

2.3 3D Data Acquisition

Three-dimensional data acquisition is the process of obtaining "point clouds or
volumetric data by using established mechanisms or phenomena for interacting
with the surface or volume of an object of interest" [11]. A device that performs
3D data acquisition is regarded as a 3D scanner. There are many technologies
available on the market but the remainder of this section is devoted only to the
main 3D scanning technologies suitable for acquiring data about some objects of
interest, such as buildings or open spaces.

2.3.1 Laser Scanning

Laser scanners (or time-of-flight scanners) make use of an object’s property of re-
flecting light to measure the distance between the device and the target. Precisely,
these devices are based on "the propagation delay of electromagnetic waves" [11].
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They are well suited for medium to long-range scanning and applications in which
a high degree of precision is required - the estimated accuracy for high-end prod-
ucts is 2-5mm - and they bring the advantage of rapid surveying. The technology
constitutes the "point cloud-based approach" towards 3D data acquisition, since
the result is a set of discrete points that make up the scanned object [12]. There
are different methods of laser scanning, depending on the platform on which the
sensor is placed. Thus, we can distinguish between terrestrial laser scanning (TLS)
and mobile laser scanning (MLS) [13].

2.3.2 Photogrammetry

Photogrammetry represents the "image-based approach" towards 3D data acqui-
sition and it relies on the process of taking numerous photographs of the same
object from different angles using one or more cameras. While the accuracy of the
model is not extremely high (errors of a few decimeters occur) [12], the strength
of this technology lies in the ability to capture features such as texture or color,
thus making a digital object aesthetically pleasing and giving the impression of
higher resemblance with its real counterpart [14]. The acquired data is actually of
a two-dimensional nature but 3D reconstruction can be done by software in order
to obtain a point cloud [15, 16]. In this case as well, the sensor - here, a camera -
can be mounted on different platforms, such as drones (aerial photogrammetry) or
tripods (in architectural photogrammetry, for example) [17].

2.3.3 Integrated Approach

The combination of the two technologies leads to the so-called "integrated ap-
proach", where a laser scanner and a digital camera work in tandem and the result
comprises all the desired features: high accuracy alongside texture and colour.
More often than not, professional high-end scanners utilize the integrated ap-
proach for its completeness, but they are still branded as "laser scanners" [12].

Conclusion

The aforementioned technologies are part of the 3D scanning industry because they
provide features suitable for specific applications, with research clearly illustrating
the success of each one of them [10, 12, 15, 16, 4]. Considering the information
provided above, the integrated approach seems the best one if getting the highest
scan quality is the primary objective. It should be reiterated, however, that the
choice really depends on the application.
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2.4 Applications of 3D Scanning

The point cloud obtained as a result of 3D scanning is a useful asset which can be
modelled into different forms that allows it to be utilized for various applications.
Therefore, the section below will cover the application of 3D laser scanning tech-
niques such as terrestrial and mobile laser scanning, as well as its combinational
use with photogrammetry in multiple fields.

2.4.1 Virtual Reality and Game Design

For games and virtual reality, the developers are trying to create environments
that could contribute to an immersive experience for the user. To do so, these en-
vironments are designed to be highly realistic but creating such detailed realistic
surroundings manually can be painstakingly long and time consuming. Conse-
quently, the industry is utilizing 3D scanning technology to scan real physical sites
to create 3D environments that are detailed and accurate to the minuscule scale,
which can then be rendered into the gaming or virtual reality platform. This pro-
cess of rendering the scanned image into the platform instead of creating it on a
computer makes the whole procedure time efficient and saves a lot of effort and
resources that could be diverted elsewhere in the creation stage [18].

2.4.2 Building Information Modeling (BIM)

The BIM process is a digital flow of information among all the stakeholders such as
engineers, architects, and construction professionals involved in an infrastructure
project. This allows them to have access to all the information that incorporates
every aspect of an asset, such as building design using 3D models, schedules etc.
Furthermore, BIM is a collaborative effort to effectively plan, design, construct and
manage buildings and infrastructure in general. One of the advantages of BIM, i.e.,
to capture information of a construction site, is being made possible with the use
of 3D scanners which are used to scan the site even before the process begins. This
can provide important information like ground elevation and 3D models of preex-
isting infrastructures, therefore accurately capturing reality and greatly streamlin-
ing the process of project preparation [19]. Additionally, information modeling is
not just unique to buildings, it is being applied in other fields such as automotive
manufacturing or aerospace engineering.

2.4.3 Accident Scene Reconstruction

Accident scene reconstruction is performed for in-depth analysis of the dynamics
of a collision event [20]. On the accident scene, the experts need to collect data
such as distance of the debris from the vehicles or tire marks. One of the standard
practices is to take measurements manually, but this method is time consuming
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and limited to few tens of measurements. Time is a big factor because when the
traffic lanes are closed for examining the site, collateral accidents may occur. Fur-
thermore, at the scene of the accident, the exact amount of data required for the
analysis is not known and relevant details can be missed [21].

The emergence of 3D scanning techniques such as TLS have made the process
of data collection safer and highly efficient, as it takes place without traffic inter-
ruptions. The process is faster, flexible and reduces the people required to gather
data. In a standard setting, an investigator returns to the accident scene between 8
and 12 times [20]. However, with the utilization of 3D scanners, these visits could
be made virtually through a reconstructed 3D digital model, which could also re-
veal crucial pieces of evidence not considered at the beginning of the investigation.

2.4.4 Historical Building Documentation

The deterioration of historical monuments along the passage of time is inevitable.
Thus to preserve these buildings, restoration and documentation are needed. This
is where 3D scanning techniques come into play: they prove as certainly convenient
and efficient ways of documenting the heritage buildings as 3D digital models. The
3D models can be utilized by restoration companies as well as provide opportunity
for archaeologists around the globe to study a heritage site virtually without even
travelling to the actual location. Furthermore, 3D laser scanning is a no-contact
technology which ensures that the monument does not get affected in the process.
For documenting heritage sites, terrestrial laser scanners are used in conjunction
with a camera. The combination results in a high-resolution detailed scan [4, 22].

2.4.5 Architecture and Construction

Many architectural projects involve renovation and reconstruction of old infras-
tructure and many times the “as-built” drawings of the structure are inaccurate or
incomplete. So, if a project is planned according to an outdated drawing, it would
result in the errors being “designed-in” along with the rest of the plan. These
errors would be very difficult to spot until the latter half of the process, i.e.: the
construction phase, at which it would be far more complicated and time consum-
ing to resolve the problem. Consequently, TLS can be utilized to capture point
clouds of the project site to make accurate and detailed 3D digital drawings of the
infrastructure, which could be compared with the existing drawings in order to
validate and correct them. Moreover, if the infrastructure in question is missing
the “as-built” drawings from the start, then the scan information can be used as a
template for creating new documentation as well as for planning the project [23].

The other situation in which TLS can be applied is construction validation, it is
for scanning the on-going construction process to validate whether the work put in
place is as planned. The scans could be taken on a regular basis and then aligned
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with the original design to detect clashes. Subsequently, the issue can be resolved
before it delays the entire construction process [23].

2.4.6 Urban Modeling

Obtaining the open-air map of the city is useful in many infrastructure fields.
Generally, it shows the picture of the entire urban asset that city authorities will
consider in order to plan future alterations of the city construction. MLS is the
most popular tool for modeling the urban map. Its ability to scan the surrounding
while moving is an advantage in terms of efficiency. A laser scanner is usually
mounted on a automobile which is driven around the city or on a drone to get an
aerial view. Surely, in an urban environment there are some areas where vehicle
access is restricted and in that case the scanner is mounted on a backpack and the
working principle is the same as in the vehicle case [24].

2.4.7 Underground Railroad Survey

At present, traditional surveying methods are being used in order to measure pa-
rameters concerning underground rail structures and compare them with initial
measurement data of the given structure. In case of data discrepancy, consequences
can be life-threatening, so a comprehensive analysis of the data is made by the city
authorities. Performing this task manually could be also dangerous because of per-
manent train rides. Therefore, utilization of 3D scanning is becoming necessary.
MLS system is suitable for performing the task because its mobility allows faster
scanning of large areas. It is mounted on a special automatic slide rail car to scan
the area in front of the vehicle [25].

Conclusion

The selection of an application field depends on the group’s ability to develop,
implement and test the technology required for the said application. Most applica-
tions, like accident scene reconstruction or historical building documentation, re-
quire expensive high-precision 3D scanning equipment and thus, within the avail-
able resources to the group, a proper implementation cannot be made for these
applications. On the other hand, for architecture and construction, the scans need
not be highly detailed and precise in terms of texture and colour for further proce-
dures, contrary to virtual reality and game design. Thus, an integrated approach
with a camera will have no applicable consequences. Also, the equipment avail-
able to the group would be adequate to obtain the required point cloud density for
architectural analysis of 3D scanned surroundings. Therefore, any further analysis
in this report would be based on the application of 3D scanning in architecture and
construction.
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2.5 Possible Solutions

In the following section, several possible solutions are listed and described for the
chosen application: architecture and construction. It was already stated before
that the main focus will be directed to the laser scanning methods and solutions.
Additionally, it should also be noted that we will restrict ourselves to considering
indoor scanning exclusively, since operating a system outside would entail dealing
with various external agents, such as unfavorable atmospheric conditions and the
large scale of the testing area.

2.5.1 MLS

Wheeled Vehicle

Wheel-based MLS entails having a laser scanning system integrated into the AGV
(Automated Guided Vehicle) that will be able to move inside buildings and scan
the surroundings in an efficient way. However, utilizing the vehicle would be
inconvenient for several reasons. For example, the AGV may meet obstacles such
as stairs and doors that will require a person to lift it and move it across the
obstacle. Also, if the building has more than one floor, the vehicle will not be able
to automatically move between storeys.

Handheld and Backpack

Another possible solution related to MLS scanning methods is simply a scanning
system that can be handheld or mounted on a backpack. Arguably, these solu-
tions are suitable for scanning any indoor area, irrespective of the size because
the scanner would be able to create a 3D digital map of any place where the per-
son carrying it may go. However, a mobile laser scanner involves implementing
a method to keep track of the scanner’s continuously changing location. Due to
the fact that GPS cannot be used indoors, an algorithm based on the obtained data
from different sensors should be used instead. Even if such algorithms have al-
ready been implemented (e.g: Simultaneous Localization and Mapping [26]), their
complexity is beyond the knowledge base of the group. Additionally, scanning the
surroundings with a handheld device entails the effort of the operator.

2.5.2 TLS

Unlike MLS, TLS does not have many variations on where it can be mounted.
Since it is able to scan the area only motionlessly, there is no need to argue where
it should be integrated - on a tripod, wall, table etc. In this case, the utilization of
different scanners plays an important role in obtaining a 3D digital map for archi-
tectural purposes. Generally, LiDAR (acronym for Light Detection And Ranging)
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is used for TLS in order to scan indoor sites, gather data points and send them
for further processing. There are several LiDAR sensors that are suitable for this
purpose, such as 2D and 3D LiDAR, which are capable of providing more than one
point per reading. However, with regard to the resources available, these sensor
are not a viable option due to their high cost. A second solution would be a 1D
LiDAR sensor, which can provide the distance to a point in its direct line of sight.
This solution may seem irrelevant to the project because the goal is to obtain a
three-dimensional map. Nonetheless, it is possible to obtain a 3D point cloud from
a 1D LiDAR sensor by rotating it using actuators, thus optimizing costs [27, 28].

Conclusion

After considering all the aforementioned possible solutions, the group has chosen
to use TLS for scanning an indoor area. The solution to work with a 1D LiDAR
sensor hereinafter is not the simplest because of its inability to scan 3D spaces
while being motionless. However, working with a 1D LiDAR in the project offers
the possibility of implementing actuators for the operation of the 3D scanner.

2.6 Stakeholder Analysis

One of the main factors when developing a new technology is identifying who
might be interested or affected by it. If the technology does not have a solid base
of people that find it useful, there is no point on investing any resources on it. For
this reason, it is necessary to make a stakeholder analysis, distinguishing between
entities who do not have a direct control over the technology (interested parties)
and those whose decisions can affect its implementation (actors and the drivers of
technology), as shown in Figure 2.2.

Interested Parties

 
Actors

Drivers of
Technology

Figure 2.2: Stakeholder Diagram
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2.6.1 Interested Parties

Although there is a variety of parties who might be interested in 3D scanning, the
main ones, provided how the project is focused, are architects, interior designers
and any construction-related professional [5] as well as the companies employing
such people. The clients of these professionals can benefit from the implementation
of this technology and therefore they can also be classified as interested parties.

2.6.2 Actors

As any electronics-based system, our technology needs companies that provide
the necessary components and assemble the final product so it can be sold to the
public in an optimal working condition. Thus, the decisions taken by hardware
suppliers and manufacturing companies can drastically affect the characteristics
and the availability of our solution. In addition, competitors that develop 3D scan-
ners can also have an impact on the features of the device implemented in this
project. Governments and standard agencies are important actors as well, since
the technology may need to be slightly changed to adapt to a certain legislation in
order to be able to sell the product in all the markets.

On a different level, it is inevitable to mention our supervisors and the univer-
sity as important actors whose decisions could influence the project. Finally, this
project, would not be possible without a team of developers. The group ED3-1-E18
have the final responsibility over the development and implementation of the 3D
scanner.

2.6.3 Drivers of Technology

Although a single electronics manufacturing company cannot be considered a
driver of technology, the manufacturing industry as a whole can be considered
a technology carrier, since it has the power over the production of the components
needed by the developed device. Another example of a driver of technology is
represented by the investors that back up the 3D scanning industry financially.

2.7 Legislation and Standards

Even though no European or international legislation strictly concerning architec-
tural 3D laser scanning has been found, some legal aspects, as well as international
standards, that affect the design and use of 3D scanners, amongst other pieces of
electrical equipment, can be identified.
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Low Voltage Directive (LVD)

The scope of this EU regulation is to ensure the health and safety of users of
electrical appliances placed on the Union market. The equipment that falls under
its purview is the one that operates between the following voltage ranges: 50V
- 1000V (for AC) and 75V - 1500V (for DC). All devices should be engineered
according to the state of the art and their functionality should not damage the
property where they are installed [29].

Waste Electrical & Electronic Equipment (WEEE) Directive

This piece of legislation aims to diminish the environmental impact of waste in
the form of electrical devices, by facilitating their recycling. For this reason, it
forbids the producers of electrical equipment to impede the reuse of WEEE by
implementing specific features to their devices [30].

International Electrotechnical Comssion (IEC) Standard 60825-1:2014

The 60825-1:2014 international standard concerns the laser products that operate
at a wavelength of laser radiation which falls in the range 180nm - 1mm. These
products can be either stand-alone or part of a more complex electrical, mechanical
or optical system. The scope of the standard is to classify laser products by the
potential radiation hazard they pose and to specify the protective attributes that
minimize the risk of human injury. Emphasis is placed on adequate labelling of
the laser products [31].

Conclusion

All these regulations must be respected in order to obtain a quality product that
could be utilized in the EU.

2.8 Risk and Safety

The only risk that is worth being taken into consideration is laser radiation. Work-
ing with lasers should be a matter of great caution, for there is a risk of eye or skin
damage being inflicted on operators. According to the IEC 60825-1 standard, the
least hazardous laser class is Class 1; it is low-power and safe under all conditions
of normal use, in the sense that there is no upper limit for time exposure. For other
laser classes, protective eyewear is essential [31, 32].
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Conclusion

To minimize the risk, a low-power laser should be used in the project, with Class
1 being recommended from a safety point of view.

2.9 Problem Statement

After analyzing the different applications of laser scanning in various contexts, it
is time to make the initiating problem more specific so it is easier to find a concrete
solution for it. Thus, the definitive problem is stated as:

Designing a stationary LiDAR-based 3D scanner to construct the digital model of a room

2.10 Project Specifications

This section will describe, according to the guidelines fleshed out throughout the
problem analysis, the specifications and procedures that are necessary for the im-
plementation of the practical phase of the project, i.e.: to build a 3D laser scanner
that can scan the internal structure of a room.

Acquisition of Point Cloud Data

The output from a laser scanner is a point cloud data of the area being scanned.
Accordingly, the 3D scanning apparatus designed by the project group should be
capable of generating point cloud data of the infrastructure to be digitized.

LiDAR Sensor

LiDAR sensors are a crucial part of 3D laser scanners and a 1D LiDAR is the
only viable option available. Accordingly, the group should be able to utilize a
1D LiDAR sensor in conjunction with other components for acquiring point cloud
data.

Actuators

It is necessary to move the 1D LiDAR sensor to acquire the point cloud data from
all its ambient infrastructure. Such motion can be achieved by using two actuators,
one for 360◦ rotation of the sensor in the horizontal plane and the other for the 180◦

rotation in the vertical plane. Hence, the group should be able to implement the
above-mentioned maneuvering through the use of appropriate actuators, so that
the built device in question is fully capable of scanning a 3D space.
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Battery

The laser scanner can be required to scan in situations where it is not possible
to power it through the grid (power socket). Therefore, the power to the scan-
ner should be supplied through a battery, which has adequate autonomy and is
rechargeable. Battery autonomy is a crucial aspect as low battery conditions can
derange the movement of motors which can affect the overall quality of scan.

Processing Scanner Data

The point cloud data captured through the scanner is of no use unless it has been
exported to a appropriate software for further processing. The data obtained from
the scanner is just a series of numbers indicating the position of a point, thus it first
needs to be converted to a coordinate system. The acquired coordinates should
be plotted by the software automatically to a medium that is comprehensible. If
necessary, the software should also be able to remove the noise from the input data
to improve the overall quality of the scan.

Microcontroller

As discussed in the previous points, a complete 3D laser scanning system would
require actuators and a LiDAR sensor. Therefore a microcontroller (uC) is needed
for controlling these input and output devices as well as for sending data to the
computer.

Interface

The procedure to operate the 3D scanner should be as easy as possible which could
be achieved by designing a user-friendly interface. Through the interface, the user
should be able to start a scan and choose between different scanning parameters.

Operating Thresholds

The device should be programmed in such a way that the user can change the
operating thresholds. The thresholds involve rotation speed, maximum and min-
imum vertical and horizontal angles of movement etc. The adjustment in these
parameters would in turn change the output of the device.

Storage

The processed point cloud data from various scans of different locations should be
stored, so that they can be accessed later.
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2.11 Project Delimitations

Given the time allocated for the completion of the project is three months and a
half, some clear boundaries have to be set before the development phase is started.
This section is meant to indicate the aspects related to the final product that are
intentionally left aside because they cannot be implemented in the specified time
period.

System Appearance

The solution we aim to develop mainly concerns aspects related to the fields of
electronics and computer engineering. Even though we desire our product to be
aesthetically pleasing, little effort will be directed towards accomplishing an elab-
orate exterior design.

Data Visualization

Following the data acquisition process, a set of points will be plotted in the form
of a point cloud. Apart from noise reduction, no further actions will be taken to-
wards surface reconstruction, because of the well-known time constraints. A point
cloud with a fairly high density conveys valuable information about the aspect and
dimensions of a scanned space and should suffice to prove the functionality of the
device.

Platform for Displaying Point Clouds

The control over the actuators and the sensors employed in the project is granted
to a microcontroller, but the processing and visualization of the acquired data will
be done using a computer. The motivation is that, unlike a computer, a microcon-
troller does not have an operating system and cannot run programs able to plot
the required set of points.



Chapter 3

Methods and Materials

3.1 System Overview

In this chapter, the theoretical basis of the project will be discussed and the list
of the utilized components will be laid out. For convenience, a crude overview
of the practical part of the project should be provided. This overview will focus
on augmenting the specifications discussed in Section 2.10 to describe the basic
operating procedure of the developed laser scanning apparatus. The following
steps elucidate the respective procedure:

1. To scan the surrounding area, the system is designed to maneuver the LiDAR
sensor around its horizontal and vertical axis. A stepper motor rotates the
sensor 360◦ in the horizontal plane and a servo motor rotates it in vertical
plane within an angular range of 180◦.

2. To procure the coordinates of a point, the system utilizes the spherical coor-
dinate system. The indexes for the system corresponds to the distance given
by LiDAR, rotation angle of the servo motor and rotation angle of the stepper
motor respectively.

3. Once a coordinate is acquired, the readings of the sensor, as well as the an-
gular data are transferred through serial communication from Arduino Uno
to a laptop, then processed using MATLAB and stored in a file. The data is
finally plotted in 3D space, thus constructing the point cloud of the scanned
environment.

A graphical representation conveying the basic idea behind the practical part
of the project is illustrated in Figure 3.1.

17
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LiDAR

Servo

 Stepper

      360o  
horizontally

    180o  
vertically

Point Cloud of a Room

Figure 3.1: Diagram of General Idea

To show the relationship between the main pieces of hardware utilized, a block
diagram was made, and it is shown in Figure 3.2. In the subsequent sections of the
present chapter, all the individual components will be described in more detail.

Arduino Uno 

LiDAR 

Stepper 
Driver

Stepper 
Motor

Servo Motor

PC with
MATLAB

PWM

USB

Buck
Converter

I2C DC Power
Supply

Figure 3.2: System Block Diagram

3.2 Arduino Uno

When it came to the choice of an appropriate microcontroller, the group opted for
the use of an Arduino board, because of its appropriate specifications and preva-
lence in electronics projects. Moreover, the compatibility with many sensors, for
which dedicated libraries have been developed (such as Servo.h and LIDARLite.h,
for interfacing RC servo motors and LiDAR Lite v3/v3HP sensors, respectively),
and the wide range of support available online corroborated to the hypothesis that
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utilizing an Arduino would be a solid decision. A very popular and commonly
used microcontroller in the Arduino family is Arduino Uno (Figure 3.3), which
provides enough resources in terms of power and pin count to be at the core of
the system developed in this project. The board operates at 5V and comes with
an on-board voltage regulator that makes it possible to use a supply voltage in the
range 7-12V. It has 20 GPIOs, out of which 6 have Pulse Width Modulation (PWM)
output capabilities. The maximum current per I/O pin is 40mA and the upper
limit for a 5V-GND line is 200mA [33].

At the core of Arduino Uno lies the ATmega328P, a CMOS 8-bit AVR RISC mi-
crocontroller with a clock frequency of 16MHz that uses the Harvard architecture,
which means program and data are stored separately and transferred employing
distinct buses. The program memory is represented by 32KB of Flash, while data
is stored in 2KB of SRAM. Additionally, 1KB of EEPROM is also present on board.
The device features 3 timers, namely Timer0 (8-bit), Timer1 (16-bit) and Timer2
(8-bit), which can be used for event management as well as for generating PWM
outputs (on Arduino Uno, the Servo.h library uses Timer1 for this purpose). For
serial communication, the interfaces available in the uC include UART (Universal
Asynchronous Receiver Transceiver) and I2C (Inter-Integrated Circuit) [34].

Figure 3.3: Arduino Uno Rev3 (ATmega328P)

3.3 LiDAR

The project requires a sensor to measure the distance to a point on the external
surface of an object. There are various sensors that can determine this distance such
as ultrasonic and infrared. When discussing these, the ultrasonic sensor provides
a medium distance range up to 4m [35], but the spread of its transmitted beam
makes it erroneous for our application, which requires the distance measurement
of closely spaced points. The infrared sensor on the other hand provides a smaller
beam that can capture much more distinct points over a region as compared to the
ultrasonic sensor, but its range presents itself as a drawback, being up to 150cm
[36], which is greatly deficient for our needs. All these constraints can be overcome
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by a LiDAR sensor that brings higher range distance measurements along with a
narrow beam which can acquire closely spaced points. As a result of this and
the problem analysis, we decided to use LiDAR as the driving technology of the
project, but the variety of different LiDAR sensors available on the market is wide,
and there is always a compromise between price and features of the device. Thus,
we were looking for something affordable but sophisticated enough to fulfill our
goals.

LiDAR-Lite v3HP (shown in figure 3.4) seemed to be highly cost-efficient so
we decided to implement it in our prototype. With its 5V operation voltage, low
power consumption (about 0.5W) power and compelling specifications, it seemed
the ideal solution for our purposes. Among its more interesting characteristics, we
can highlight its 40m range that is suitable for our purpose of indoor mapping,
its 5V/85mA operation (that makes it possible to power the device directly from a
microcontroller for testing purposes), its connection versatility (it can be controlled
by both PWM and I2C) and its 1kHz maximum frequency, allowing for a high point
acquisition rate. Furthermore, it also boosts an accuracy of ±2.5cm for distances
greater than 2m and ±5cm for less than 2m, providing a resolution of 1cm. In
addition, the sensor is designated as a Class 1 laser which ensures the safety of the
user and fulfills the regulations specified in Section 2.8.

Figure 3.4: LiDAR-Lite v3HP

3.3.1 Theory of Operation

LiDAR is a remote sensing method based on pulsed laser beams [37]. It allows
the measuring of ranges with solid precision in a variety of environments and
mediums (air, water, void). The LiDAR Lite v3HP works on the “time of flight”
principle to calculate the distance. Accordingly, it measures the time taken by a
transmitted signal to return to the device’s receiver, which is then translated into
distance using the known speed of light (shown in Equation 3.1).

R =
c · t
2

(3.1)
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where:
R = the distance between LiDAR and the target
c = speed of light in vacuum
t = time delay between transmission and reception

3.3.2 Limitations

Although the selected sensor has various interesting features, it has some obvious
limitations too. The most concerning is its one dimensional scanning design. This
entails a vital downside: the sensor can only deliver 1 point per measurement.
Thus, the output we get after every cycle is the distance from the device to the
obstacle instead of a set of points within a certain angle. This translates to LiDAR-
Lite v3HP needing a higher time span for delivering the same amount of points
compared to higher-end equivalents. Its frequency does not allow a very high point
redundancy in a reasonable time span, meaning that the resulting point cloud is
more susceptible to noises and misreadings. It must be stated that these issues are
especially concerning in applications where the sensor is mounted on a moving
object, such as a drone. Provided that in our system the sensor does not displace
but only rotate around itself, these issues do not represent a major problem further
than waiting more for getting the final point cloud.

On the other hand, some other limitations can represent a major inconvenience.
Due to the physical principle of LiDAR (reflection of light in surfaces), specular
surfaces such as mirrors that are smooth and reflect energy instead of dispersing
it, may not be detected by the system (see Figure 3.6). When a diffuse surface like
a wall is irradiated with a laser beam, it spreads the beam into lower energy beams
in all directions (see Figure 3.5). A percentage of the reflected rays hits the sensor
after a certain time. When the surface is specular, most of the energy is reflected
away from the emitting point, so the sensor does not detect any returning beam
and therefore the point is not saved [38].

Figure 3.5: LiDAR Beam (Diffuse Surface) [38] Figure 3.6: LiDAR Beam (Specular Surface) [38]
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3.4 Stepper Motor

3.4.1 Motor Selection

The choice of using a specific type of DC motor to create a 360◦ rotation was taken
after comparing the most popular options available on the market (brushed and
brushless DC, RC servo, stepper), knowing that not all are suitable for a given
application. The critical features were found to be the ability to complete full
rotations, precise shaft positioning, robustness and low cost.

Brushed DC motors (BDC motors) incorporate a commutator ring and brushes
that allow them to rotate. These components are very prone to damage caused by
extended use, which makes the BDCs, in spite of their low price, a non-viable so-
lution. Moreover, precise positioning requires the use of encoders to provide feed-
back and consequently the cost increases. Brushless DC motors (BLDC motors) do
not rely on brushes, as their name suggests, which greatly prolongs their lifespan,
but suffer from the same disadvantage of lack of position feedback [39]. RC servos
(servo motors) are well-suited for precise positioning applications; notwithstand-
ing, common servos are only able to rotate 180◦, with the 360◦ versions encountered
at higher price ranges. Usually, these motors do not send any position data back
to the controller, but feedback versions can be acquired [40].

The last type of motor that will be discussed is the stepper motor. A stepper
motor (alternatively, stepping motor or step motor) is an electronically commutated
motor widely used in applications involving measurement and control because of
its ability to adjust the position of its rotor by means of precise increments, that
is, to move in very well-defined steps [41, 42]. Some characteristics of this class of
actuators are: lack of brushes, full rotation, low price [43]. They offer open loop
positioning, which means there is no position feedback given to the controller. To
clarify, the position of the shaft is known at all times, even though there is no
way to check the "actual" position [41, 42]. Despite this undesirable trait, accuracy
should not pose an issue, provided the maximum torque rating of the motor is not
exceeded, as steppers are designed to work without a feedback mechanism [44].

In the broadest classification of stepping motors, three types can be identified:
variable reluctance (VR), permanent magnet (PM) and hybrid. They differ not only
in construction and functionality but also in step angle and driving method. They
all do have in common, however, the use of coils wound around the poles of the
stator; the currents flowing through the coils create magnetic fields that control
the rotation. Hybrid and PM motors can be further classified into unipolar and
bipolar, depending on whether a half of a winding or a full winding is energized
at a time, with the latter configuration providing more torque. In addition, bipolar
motor drivers are widely available. Hybrids are extensively used in applications
that call for high-resolution stepping, common step sizes varying between 0.9◦ and
3.6◦ [41, 42, 45]. Consequently, the selected motor was a bipolar hybrid stepper.
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3.4.2 Working Principle

A stepper comprises a stator and a rotor. In a typical hybrid configuration, the
rotor consists of a cylindrical permanent magnet covered at both the north and
south poles by two misaligned toothed metallic end-caps. The stator has poles (not
to be confused with the magnetic ones), usually 8, each with the same number
of teeth. Two windings (also called phases) are located in the stator, covering 4
poles each. The phases are energized by running currents through them. This
process generates magnetic fields that attract or repel the magnetized rotor caps.
When current passes through one phase, with the other not being energized, the
rotor moves one step, in the direction dictated by the current flow. Successive
excitation of the windings in a specific sequence maintains the rotation. The most
encountered step length is 1.8◦, which translates to 200 steps per revolution [42,
46].

3.4.3 NEMA 17 Stepper Motor SM-42BYG011-25

The exact motor model utilized in the project is NEMA 17 SM-42BYG011-25, a
200-step 2-phased bipolar hybrid stepper motor, rated with 12V and 330mA per
winding. The resolution is 1.8◦. A picture of the component is shown in Figure 3.7.

Figure 3.7: NEMA 17 Stepper Motor SM-42BYG011-25

3.5 Stepper Motor Controller

3.5.1 Motivation

A microcontroller cannot supply the voltage and current needed by a step motor
and for that reason a driver that can provide the necessary power has to be em-
ployed. Upon receiving instructions from the uC, this device translates them to the
required excitation sequence that turns the rotor [47].
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3.5.2 Basic Control Circuit

Bipolar stepping motors, either PM or hybrid, are driven using a circuit that in-
cludes two identical H-bridges, because the current flow through each winding
must be controlled independently [45]. Such a circuit is shown in Figure 3.8.

Figure 3.8: Bipolar Stepper Dual H-Bridge Drive Circuit

3.5.3 Excitation Modes

Energizing the motor windings in specific sequences controls the circular motion of
the step motor. These are sometimes referred to as modes of operation or excitation
modes. In an ideal scenario, step motors are driven with currents in the form of
sinusoidal wave approximations: one phase using a sine signal, and the other using
a cosine signal, such that the phase difference between the two currents is 90◦. An
excitation sequence can cause the rotor to move several steps and its duration is
determined by the period of the current wave forms applied to the windings; one
cycle of the current signal is equivalent to one excitation sequence [44, 48].

In the following discussion, it is helpful to think of the stator of a two-phased
bipolar stepper as two distinct windings, a and b. Let the corresponding currents
be labeled Ia and Ib. Additionally, let Imax be the maximum current (specified by
the manufacturer) that can flow through each phase of a given step motor. Any
excitation sequence can be illustrated with the aid of graphs, in which Ia/Imax and
Ib/Imax are plotted against time.

The most straightforward excitation mode is called full stepping and it implies
that the rotor moves with its default step angle. In this case, a four-step sequence
is utilized and thus each mechanical step corresponds to 90 electrical degrees [44,



3.5. Stepper Motor Controller 25

48, 49]. Figure 3.9 shows two cycles for each of the current wave forms used to
drive the motor in the described fashion. The chosen period is 2π seconds.

Figure 3.9: Full Stepping Current Wave Forms

3.5.4 Microstepping

The full stepping technique involves an important drawback. The movements of
the shaft are spasmodic, especially when the angular speed is low, which creates
vibrations and noise in the system. If this issue is to be avoided, the more advanced
stepping algorithm referred to as "microstepping" must be used. This mode of op-
eration increases the stepping resolution of the motor by dividing each original
full step in many microsteps while minimizing the vibrations. The system perfor-
mance is thus increased because the rotation of the motor is smoother and more
precise [41, 48, 49].

Depending on the degree to which the resolution is increased, the number of
steps in the excitation sequence grows as well, while the resemblance between
the current wave forms through the windings and a sinusoidal signal becomes
more conspicuous. Figure 3.10 illustrates two cycles (the period is 2π seconds)
of the hypothetical wave forms for 1/8 microstepping. A mechanical microstep
corresponds to 11.25 electrical degrees, so during an individual cycle the rotor
moves 32 microsteps.
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Figure 3.10: Microstepping Current Wave Forms

3.5.5 EasyDriver

The motor controller chosen for driving the bipolar stepper was EasyDriver v4.5
(Figure 3.11). It is an inexpensive driver that works with power supplies between
6V and 30V (it has an on-board 5V regulator) and can handle currents in the
range of 150mA/phase - 700mA/phase, which means that it is compatible with
the NEMA 17 SM-42BYG011-25 stepper. Apart from full and half stepping, it al-
lows two microstepping modes that increase the stepping resolution by a factor
of 4 and 8, respectively. Hence, with the selected 200-step motor, one can obtain
either 400, 800 or 1600 steps per revolution. In terms of angular positioning, the
corresponding step lengths are 0.9◦, 0.45◦ or 0.225◦. All these features, along with
the small size, made EasyDriver a solid motor driver option.

Figure 3.11: EasyDriver Bipolar Stepper Motor Driver
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A bipolar stepper motor must be connected to the pins A+, A-, B+ and B- of the
driver, which are the outputs of the two H-bridges, where each letter is associated
with an inner motor coil. The upper limit for the peak current provided to the
motor can be varied using a potentiometer. The rotation is controlled by sending
a square wave to the STEP pin: the motor steps at every low-to-high (0-to-5V)
transition. The spinning direction is dictated by the value written to the DIR pin.
To set the length of each step, the pins MS1 and MS2 need to be configured. There
are four possible configurations, shown in Table 3.1 [50, 51].

Table 3.1: EasyDriver Microstepping Configurations

MS2 MS1 Resolution Step Angle (degrees)
0 0 Full Step 1.8
0 1 Half Step 0.9
1 0 Quarter Step 0.45
1 1 Eighth Step 0.225

3.6 Servo Motor

3.6.1 Motor Selection

In the previous section, we have discussed about the stepper motor, utilized for
the 360◦ rotation in the horizontal plane. Similarly, a suitable actuator is necessary,
that is responsible for the movement of the LiDAR sensor in the vertical plane. All
the motors considered in Section 3.4, such as, brushed DC, brushless DC, stepper,
and RC servo, can also be considered as possible choices for vertical plane move-
ment. The brushed and brushless DC motors can be dismissed based on the same
reasoning as in Section 3.4.

In order to get the accurate coordinates of the points on the scanned surface,
the motor’s movement needs to be precise, so that the scanned angle is the same
as programmed. The stepper motors have a high precision movement, but they are
designed for 360◦ rotation whereas the required angular coverage for the scanner,
in the vertical plane, is 180◦. Although the stepper motor can be programmed to
move within the required range, it obligates the use of an encoder that keeps track
of its position. The encoder’s utility arises here due to the stepper not having pre-
determined positions to which it can be moved. Accordingly, without an encoder
it is not possible to rotate the stepper shaft to a specific position at the beginning of
the scanning process, which is a key requisite for a motor needed for this purpose.
On the other hand, servo motors are also capable of moving with high precision
and generally have an angular range of 180◦. They have known fixed positions
for rotation which eliminates the requirement of an encoder. Furthermore, unlike
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stepper motors, an RC servo motor does not necessitate the use of a motor driver.
Thus, financially, simply based on components, a servo motor is much economical
as compared to a stepper motor. Considering all these aspects, a 180◦ RC servo
motor presents itself as the most suitable choice.

3.6.2 Internal Structure of a Servo Motor

A servo motor can position itself very accurately at any given input angle within
its range of movement. It is a closed-loop servomechanism that utilizes position
feedback to control the motion, speed, and final position of its shaft. The RC servo’s
anatomy incorporates components such as control circuit, feedback potentiometer,
DC motor, and drive shaft. The control circuit is responsible for receiving the input
signal and translating it into motor revolution in a way that the drive shaft reaches
the desired position. The other key element of the closed loop mechanism in a
servo motor is the feedback potentiometer, which is rotated along with the drive
shaft through a gearbox. Each of its distinct resistance corresponds to a unique
position of the shaft, which is sent as feedback to the control circuit. All the above-
mentioned components are essential to the working of a servo motor but additional
components such as encoders can be added based on the application [52, 53].

3.6.3 Working Principle

A pivotal element of the mechanism in servo motors is the comparison between
the desired and actual position of the shaft, which dictates the direction of rotation
for the internal DC motor. Firstly, the desired position is supplied as input, in the
form of a PWM signal that is converted into a reference voltage by the controller
circuit, such that, each reference voltage corresponds to a distinctive position of
the drive shaft. Secondly, the controller reads the voltage of the feedback poten-
tiometer representing the actual position. Now, the comparison between reference
and potentiometer voltage yields an error signal according to the variation among
them. This error signal serves as a control input to the H-bridge controlling the
direction of rotation for the DC motor. The rotation is done in an effort to reduce
the error. When the shaft reaches the desired position, the error becomes zero, but
the process still continues if there is an input signal and frequently (40-50 times
every second in RC servos) checks the change in the drive shaft position due to
any external influence, ameliorating it if necessary [52, 54]. The servomechanism
is presented in Figure 3.12.
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Figure 3.12: Servo Control Loop

3.6.4 Servo Control

As mentioned in the previous paragraph, the input to an RC servo motor is a PWM
signal. Figure 3.13 shows the parameters that characterizes this signal: amplitude,
pulse width, and period. Furthermore, it illustrates the standard time versus volt-
age chart for an analog RC servo motor. It can be comprehended from the figure
that the pulse width of the PWM signal controls the position of the drive shaft,
which changes according to pulse width variation [55, 54].

Figure 3.13: Servo Control Signal

3.6.5 Metal Gear Servo

The exact model utilized in the project is a metal gear analog servo motor with
feedback, i.e., it can send the servo position as analog voltage to the microcon-
troller. The model is rated for 3-6V, and 2.5kg-cm torque. A picture of the compo-
nent is shown in Figure 3.14.

Figure 3.14: 14g Servo Motor with Metallic Gears
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3.7 Spherical Coordinates

The spherical coordinates represent the coordinate system in which a point in
three-dimensional space can be described using three distinct values: a distance
and two angles. Figure 3.15 illustrates the spherical coordinates of an arbitrary
point P in space.
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Figure 3.15: Spherical Coordinates of a Point P

The first coordinate is the distance r = |OP| from the origin to the respec-
tive point and it is referred to as radius, because it constitutes the radius of the
spherical surface on which the point is situated. The following coordinate is the
azimuth angle, denoted by φ, which is the angle between the positive x-axis and
the segment |OP′|, which unites the origin with the projection of the point P onto
the xy-plane, P′. The third and last coordinate is represented by the inclination or
polar angle, θ, and represents the angle measured between the positive z-axis and
the line connecting the origin and the given point P. It is customary for the angular
coordinates to be expressed in radians. To make sure all the points have a unique
representation in the spherical coordinate system, the following restriction should
be applied: r ≥ 0, φ ∈ [0, 2π) and θ ∈ [0, π] [56, 57].

Spherical coordinates can be found using the chosen components for the project:
two motors and one sensor. However, in order to not only get the coordinates of
the points, but to also plot them to form a point cloud, a software tool is required.
For that purpose, working with rectangular coordinates is more convenient.

The rectangular or Cartesian coordinates, which are the standard way of rep-
resenting the points in three-dimensional space, are the projections of the vector
#   »

OP onto the x, y and z-axis, respectively. In other words, they can be found by
sending straight lines from the point P perpendicularly onto the z-axis, and from
the projection P′ onto the x and y-axis. The distances between the origin and the
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points of intersection between the axes and perpendicular lines yield the Carte-
sian coordinates. By using basic trigonometry, it is easy to convert from spherical
coordinates to rectangular coordinates, as shown in Equations 3.2-3.4 [56, 57]:

x = r · sin(θ) · cos(φ) (3.2)

y = r · sin(θ) · sin(φ) (3.3)

z = r · cos(θ) (3.4)

3.8 Power Estimation

After all the necessary hardware components have been discussed, it is important
to have a clear picture of the total power consumption of the scanner. Maximiz-
ing the usage of the external power source for the entire system is desired and
therefore, the total power consumption should be known while choosing a suit-
able battery. For that reason, a theoretical power estimation of the 3D scanner was
made, based on the technical specifications of the utilized hardware components.

The information about voltage and current consumption of the hardware is
given in their datasheets. Components such as the stepper motor and the servo mo-
tor are considered notable power consumers. It should be noted that the datasheet
of the utilized servo was not available and therefore the specifications regarding
the voltage and current were taken from the datasheet of a similar analog RC servo
motor [58]. The stepper motor driver and LiDAR Lite v3HP are included in the cal-
culations as well, even though their power requirements are much lower compared
to the actuators. Arduino Uno is left aside, since it would be powered by a laptop
via USB. Table 3.2 shows the components of the 3D scanner and their voltage and
current consumption, including the theoretically calculated power consumption.

Table 3.2: Power Estimation

Component Voltage (V) Current (mA) Power (W)
LiDAR 5 85 0.425

Stepper Motor Driver 5 70 0.35
Stepper Motor 12 470 5.64
Servo Motor 5 700 3.5

Total 9.915

It should be stated that the values of voltages and currents shown in the table
above correspond to maximum values in order to consider the worst case scenario
in terms of power consumption. Therefore, the battery should be chosen accord-
ingly. After calculation of the power for each component and then summing the
individual contributions, a total of 9.915W was obtained as power estimation for
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the 3D scanner. Even though Table 3.2 shows 12V supply for the stepper motor,
it is not the maximum amount the given motor can handle. A stepper can run at
a voltage higher than the rated one, which will cause the current in the windings
to rise faster, boosting the overall performance of the actuator [41]. In this project
however, where the torque requirements are not high, using the rated voltage will
suffice. In the case of the servo motor, the current specified in the table is the stall
current.

3.9 Battery

3.9.1 Battery Selection

In electric systems designed to operate in various environments, batteries are es-
sential to provide power to the device. Given the outcome of the preceding esti-
mation, a choice had to be made in terms of a DC supply that could guarantee
the continuous working of the scanner for a reasonable amount of time. Judging
by the data in Table 3.2, at least a 12-V battery is demanded by the stepper motor.
The smaller voltage (5V) required by the rest of the components can be obtained
by stepping down the battery voltage to the required value with a voltage regula-
tor. Using the basic relation between power, voltage and current, and assuming no
losses, the current the battery should supply is:

i =
p
v
=

9.915
12

= 826mA

If the working time for the scanner is assumed to be 2 hours, a suitable DC
source should be able to constantly supply 826mA during this period, that is, it
should have a capacity of 1652mAh. A further benefit will undoubtedly be added
to the system if the battery is rechargeable.

3.9.2 UL 2.4-12 Lead Acid Battery

The battery chosen for this project was the Lead Acid battery UL 2.4-12, which
is rated 12V and has a capacity of 2400mAh. It provides the required voltage
and its capacity exceeds the necessary value, which is, of course, an advantage. A
simple calculation shows that employing this battery would, theoretically, keep the
system running for almost 3 hours. The additional features of being rechargeable
and inexpensive contributed to the decision of selecting this power supply [59].
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3.10 Buck Converter

3.10.1 Selection

Two possibilities for decreasing the battery voltage to 5V were identified: linear
regulators and step-down (buck) converters. The former option is simple, low-cost,
yet power-inefficient when the difference between the input and output voltages is
large, as in the present case. The latter solution, if more expensive and complex,
guarantees power losses smaller than 10% and minimizes the amount of heat pro-
duced by the conversion [60]. As part of this project, to prolong the battery life as
much as possible, a buck converter was selected.

3.10.2 Working Principle

The circuit of the simplest buck converter can be found in Figure 3.16. Concep-
tually, the working of this regulator can be easily explained. The input voltage is
connected and disconnected alternatively from the rest of the circuit by the tran-
sistor controlled with a square wave signal. When the transistor is on, the diode is
reverse biased and acts as an open circuit. The inductor starts charging and creates
a voltage that opposes the increasing current, therefore creating a voltage drop.
Additionally, during this period, the capacitor accumulates charge in its plates.
After the transistor tuns off, the input voltage source is removed from the circuit.
The inductor cannot handle the instantaneous change in current and therefore it
tries to maintain the flow by adjusting its voltage accordingly. The potential at the
left terminal of the coil becomes negative, which forward biases the diode. Both
the capacitor and inductor discharge during this time. By controlling the amount
of time the input is connected to the circuit, i.e., the time the transistor is on, a
desired output voltage, smaller than the input, can be obtained [61, 62].
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Figure 3.16: Buck Converter Basic Circuit

It can be deduced that, for a given "on" time of the transistor, a series of square
wave pulses is present at the left terminal of the coil. The LC configuration shown
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in the schematic filters this signal, producing a steady DC output across the resis-
tive load [61].

3.10.3 XL4015 LM2596 Step-Down Converter

The selected switching regulator was XL4015 LM2596 (Figure 3.17). The input
voltage range is 8V-36V and it can produce potential differences between 1.25V
and 32V at the output. It is capable of handling loads consuming up to 5A.

Figure 3.17: XL4015 LM2596 Buck Converter

The main advantage of the module is that it generally provides high efficiency.
For an input voltage of 12V, an output voltage of 5V and a load current of around
826mA, which are the requirements imposed by the hardware employed in the
project, the efficiency curve of the converter indicates around 91%. Thus, only 9%
of the power supplied by the battery is dissipated as heat [63]. Because of that,
the decrease in the battery discharge time is not significant and can, therefore,
be ignored. Consequently, this step-down converter module represented a good
choice for regulating the battery voltage to the desired output.

3.11 MATLAB

MATLAB is a programming language mainly designed for processing data repre-
sented by numeric arrays. It is extensively used in science and engineering due
to its ability to unite complex mathematical calculation and data visualization,
while still providing a multitude of easy-to-use functions, with the purpose of pro-
ducing solutions to general and specific problems [64]. Because of its numerous
features and highly developed help system, MATLAB was chosen to be a part of
this project. Moreover, from an engineering point of view, MATLAB is a very use-
ful tool that is beneficial when working in the industry, and it is essential from a
learning perspective.

MATLAB brings various toolboxes which greatly extend the power of the soft-
ware when tackling certain domain-specific tasks. In the present project, the Com-
puter Vision Toolbox was used, which facilitated 3D point cloud processing.
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3.12 Point Cloud Filtering

All the data obtained by the LiDAR Lite v3HP must be processed somehow: al-
though it is reasonably accurate, we cannot suppose that all the resulted points are
within an acceptable error range. A variety of obstacles and structures can make
the sensor deliver readings that differ completely from the ones in its surrounding
(electrical noise, glass, people passing in front of the sensor momentarily), making
a potential surface reconstruction fail or converge to undesired values that might
make the final result look unrecognizable. Thus, we need a method that, based
on a large number of points, discards those that do not “fit”. Although it seems
intuitive to make an estimation based on a linear least squares regression (LLSR)
[65], as we do in two-dimensional data sets, this method fails when we try to in-
terpolate data with significant errors, even if the number of “mistaken” points is
small compared to the total sample. We can easily observe this with an example in
Figure 3.18:

Figure 3.18: Filtered/Unfiltered LLSR Demonstration

In Figure 3.18 we can see how, even if most of the points comply approximately
with a linear model (represented in blue), the method fails (as shown by the red
line) with the addition of one point located far away from the “filtered” data set
line. Thus, we need a model that takes into account a number of points that fit a
linear model within a certain error range, discarding the ones out of that range.

One of the most popular ways of doing this properly is the algorithm called
Random Sample Consensus (RANSAC). Unlike raw LLSR, RANSAC does not use
all the available data from the very beginning. Instead, it takes the least amount of
randomly chosen points (that we can call a) possible for fitting certain conjunction
of points to any structure in the 2D plane (a = 2, in the case of a line) and checks
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how many of other points in the data set can be estimated by the obtained structure
within a certain error margin. If the number of points that can be fitted by the
structure is larger than n (defining n as the number of points that are estimated to
be within a reasonable error range, this number is calculated based on the expected
precision of the system and the total number of points available) the estimation is
considered valid and the “valid” points are fitted by a smoothing algorithm such
as LLSR. If the number of points that can be fitted is smaller than n, the model
is considered invalid, and the algorithm picks other set of a points randomly and
starts the process again. If no estimation can fit a number of points higher than n,
the estimation is made based on the model that can fit as many points as possible
or the data set is considered invalid as a whole [66].

By extrapolating this method to a three-dimensional environment, we can ef-
ficiently remove the outlying points from a data set in 3D. However, the three-
dimensional application of this method is much more complex and goes beyond
the purpose of this project. The MATLAB function pcdenoise based on MLESAC (a
variant of RANSAC) [67] is a solid example of its implementation. Figures 3.19 and
3.20 show a cube with 10000 added points as uniformly distributed noise before
and after applying pcdenoise to it, respectively. We can clearly see how, thanks to
pcdenoise, the outliers are completely removed from the figure, thus filtering the
given point cloud.

Figure 3.19: Cube with Uniformly Distributed
Noise

Figure 3.20: Cube After Applying pcdenoise
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Implementation

4.1 Data Transfer and Plotting Test

Processing the data gathered by LiDAR, along with the one extracted from the shaft
positioning of the two motors, is crucial to produce the desired meaningful output.
As this is performed on a computer that runs MATLAB, and the acquisition is
done with a microcontroller, data should be transferred between the two. There is
an Arduino function, print(), which sends serial data from the board to the serial
monitor in the Arduino IDE with a set rate using UART and USB. To manipulate
this data, a script in MATLAB1 is needed to read it, store it, modify it, save it for
further reference and create a visual output, i.e., the point cloud representing the
objects whose volumetric data was previously acquired.

To illustrate the implementation of these features on the simplest level, a small
test was conducted using only the Arduino Uno and a laptop, without employing
any sensors. The relevancy of this test is indubitable, since the MATLAB code is
independent on the way the data is acquired, meaning that the processing method
remains unchanged, whether a sensor gathers the data or hypothetical values are
used instead. Processing the data describing a sphere was found to be a good
choice, as it requires a fairly large amount of data points, while being still easy to
generate. To create such a surface in spherical coordinates, the radius has to be a
positive constant, the azimuth angle should lie inside the interval [0,2π) and the
polar angle should be restrained to the interval [0,π].

The utilized Arduino code, in this case, provides the spherical coordinates of
the points making up the hypothetical sphere of radius r = 6 and prints them on
the serial monitor. In this simple program, incrementing each angle one degree

1N.B. All the information regarding the MATLAB functions used in this project was taken from
the MathWorks web site. The reference is given here and it is assumed the reader is aware that,
whenever MATLAB programming is discussed henceforth in the present report, this source was
utilized [68].

37
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at a time using nested for() loops produced a 65160-by-3 matrix, accounting for
65160 points. A character (’*’) is printed in the last line to mark the end of the data
stream that needs to be read.

On the receiving end, a MATLAB script establishes the connection to the uC
using a serial port object. The serial port to which the board is connected, the
baud rate and the terminator character (which must coincide with the parameters
defined for Arduino) need to be specified. Once the connection is made, the read
operation is carried out using the fscanf() function, which reads data from the
device and takes as arguments the serial object, the format the data will be con-
verted to and the dimensions of the matrix where the values will be stored. Data is
read in column order, and thus, to keep values corresponding to different parame-
ters separated, a 3-by-65160 matrix should be used for storage. Plotting the values
requires a n-by-3 format however, so the matrix needs to be transposed after the
serial communication is interrupted.

1 % Connect Matlab to Arduino using a serial port object
2 arduino_port = serial(’COM12’,’BaudRate’,115200,’Terminator’,’*’);
3 fopen(arduino_port); % Connect to Arduino
4 data = fscanf(arduino_port,’%lf’,[3,65160]); % Read data into a matrix
5 fclose(arduino_port); % Disconnect from Arduino
6 % Transpose data matrix
7 data = data.’;

After the spherical coordinates are extracted from the data matrix, the coor-
dinate conversion takes place, using the formulas given in Section 3.7. When the
Cartesian coordinates are obtained, the individual vectors are concatenated to form
yet another matrix, which is saved to a MAT-file, using the save() command, so
that it can be later loaded in the workspace.

1 % Extract spherical coordinates from matrix
2 azimuth = data(:,1);
3 inclination = data(:,2);
4 radius = data(:,3);
5 % Convert to Cartesian
6 x = radius .* sin(inclination) .* cos(azimuth);
7 y = radius .* sin(inclination) .* sin(azimuth);
8 z = radius .* cos(inclination);
9 xyz = [x y z];

10 save(’test_scan.mat’,’xyz’); % Save matrix to a file

The data can be plotted easily using commands from the Computer Vision
Toolbox. The matrix containing the (x, y, z)-representation of the data points is
stored in a point cloud object, which is then passed to the pcshow() function that
creates the actual three-dimensional model.
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1 p_cloud = pointCloud(xyz); % Store data in a point cloud object
2 pcshow(p_cloud); % Display point cloud

The hypothetical sphere with radius r = 6 is shown in Figure 4.1.

Figure 4.1: Point Cloud of the Test Sphere

Conclusion

Even though the described test illustrated the simplest procedure of data transfer
and plotting using only the Arduino and a laptop, it laid the foundations for the
MATLAB script required to process the data that would be provided by the motors
and LiDAR.

4.2 LiDAR Experiment

Provided that all the point cloud data relies heavily on the distances measured by
the LiDAR Lite v3HP, it was vital to perform different tests in order to assess its
precision and behaviour in different situations. During all the experiments, the
same setup was used: the LiDAR was connected to the Arduino using I2C, the uC
was powered by a laptop via USB and the power to the sensor was provided by
the 12V-battery, whose voltage has been stepped down by the buck converter. A
680µF capacitor was connected between the 5V and GND and two 4.7kΩ resistors
were placed between the 5V and SDA and SCL, respectively, as indicated in the
datasheet. The code written to get the distance remained unchanged as well, with
the function Lidar.distance(), defined in the LIDARLite.h Arduino library, being
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invariably utilized. For the I2C communication, the Wire.h library was included in
the program.

Initially, the sensor was tested for a window. When placed perpendicular to the
surface, the sensor was providing the distance corresponding to the object behind
the glass. However, when the angle of incidence between the beam and the normal
to the window was even slightly modified, the sensor read "0 cm". Then, the
working of the device when being pointed towards a mirror was observed. In this
case, regardless of the angle of incidence, the readings were absurd.

Three additional experiments were performed for diffuse reflective surfaces.
LiDAR was placed in a fixed position with respect to a solid, opaque object (a
matte wall) lying directly in front of it, i.e.: zero angle of incidence. The distance
between sensor and obstacle was varied: 20, 100 and 350 cm respectively. These
distances were chosen in order to allow accurate manual measurements with a
measuring tape. The sensor was enabled for 1 minute, and the readings were
printed on the Arduino serial monitor with a data rate of 115200 bits/s.

In the first experiment (Figure 4.2), the number of measurements was 15025,
so the frequency of the sensor was calculated to be around 250Hz. The average
distance measured was 15.6cm.

Figure 4.2: Results of LiDAR Test for 20 cm

In the second case, when the distance was increased to 100cm (Figure 4.3),
the number of measurements also increased to 15513, resulting in a frequency of
258Hz. The average distance was calculated as being 100.8cm.

For the third experiment, the distance was 350cm and the results are shown in
Figure 4.4. The number of readings was 15503, which translated to frequency of
258Hz. The mean value of the readings was 350.1cm.
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Figure 4.3: Results of LiDAR Test for 100 cm

Figure 4.4: Results of LiDAR Test for 350 cm

The data obtained led to some interesting observations. Firstly, the amount of
points obtained in the different experiments is not consistent. Although it can be
considered equal in the last 2 experiments (circa 15500), the first one shows almost
500 measurements less. It must also be pointed out that although 500 points might
seem like a large amount, it represents about 3% of the total point data, and that is
why the frequency decrease, in relative terms, is not especially high.

If we look at the data itself, although all the elements of the setup were kept
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completely steady, there is a variation on the readings that does not seem to follow
any specific pattern. Besides, we can see that the values obtained do not correspond
exactly to the distance measured manually between sensor and obstacle. In other
words, the sensor is not accurate due to different reasons. As an example, the
sensor provides a resolution of 1cm and only integer values are recorded. So, if
the distance measured has decimals, the measurement simply oscillates between
the value rounded down to the nearest integer, and the next higher integer value.
In simple distance measurement, and if the amount of points is large enough, this
can be easily solved by calculating the average distance, but in the case of point
cloud representation it might pose a harder problem to go through, especially if
the point redundancy (amount of data scanned for the same physical point) is low.

Concerning the imprecision in all of the readings, we can see a different be-
haviour depending on the magnitude of the distance measured. In Test 1 for
example, the average distance scanned is about 4.4cm lower than the measured
distance (a relative error of about 22%). In Test 2 the average absolute error is ap-
proximately 0.8cm (therefore, a 0.8% relative error). The last experiment indicates
a 0.1cm and 0.02% absolute and relative errors respectively.

Conclusion

Based on the obtained results, it can be inferred that the accuracy of LiDAR Lite
v3HP, within the distance boundaries set in the experiments, increases with dis-
tance, but even for shorter lengths the sensor provides results complying with the
datasheet. However, in terms of frequency, the device did not perform as expected,
giving an average frequency of approx. 255Hz, which is considerably less than
1kHz (as specified by the manufacturer). Considering our purpose, LiDAR works
precisely and fast enough, as long as the data is treated and processed correctly
in order to minimize errors and get a recognizable map of the scanned environ-
ment. It should be stated that, according to the performed tests, the 3D scanner
that would be using LiDAR Lite v3HP would not be able to detect windows and
mirrors.

4.3 Stepper Motor Experiment

In order to better understand the behavior of the stepping motor and compare it
with the theoretical facts discussed in Section 3.5, an experiment was performed.

The utilized hardware consisted of Arduino, EasyDriver and the NEMA 17
SM-42BYG011-25 stepper motor, which was unloaded. A DC power supply set
on 12V was used to provide power to the motor and driver, whereas the uC was
powered through the laptop via USB. All the waveforms were plotted with the aid
of the oscilloscope. The stepper was operated in two modes: full stepping and 1/8
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microstepping. In both cases, the current-limiting potentiometer on the driver was
set to allow a maximum current of 150mA (the lowest possible value, according
to the datasheet) through the motor. In terms of software, a simple program was
written, consisting of a for() loop to turn the shaft by sending a 500Hz pulse train
of 50% duty cycle to the STEP pin of the driver. Minor modifications were made
when adjusting the stepping resolution was required.

On the oscilloscope, the two currents through the windings were plotted along
with the step signal (see Figures 4.5 and 4.6). The current through phase A is shown
in yellow and the current through phase B in cyan. In both pictures, the 90◦ phase
shift between the two currents is apparent. The green square wave represents the
step signal.

In full stepping (Figure 4.5), the winding currents are an unrefined version
of the signals shown earlier in Figure 3.9. The stepping motor was noticeably
vibrating and producing a humming sound. The total current consumption was
around 90mA.

Figure 4.5: Oscilloscope Screenshot of Full Stepping Current and Step Signals

While microstepping with an angle of 0.225◦, the currents approximate the
ideal sinusoidal form, as it can be seen Figure 4.6 and as described in a prior graph
(Figure 3.10). Microstepping visibly reduced the vibrations of the actuator and
smoothed the shaft rotation, but the current drawn increased to 150mA.

Angular speed calculations were also carried out as part of the experiment. Ac-
cording to the EasyDriver datasheet, the motor steps at each low to high transition
of the step signal. For the chosen frequency of 500Hz, it is straightforward to find
that in full stepping (200steps/rev) the motor completes one full rotation in 0.4s
and thus rotates at 150RPM. Reducing the stepping angle to 0.225◦ (1600steps/rev)
caused, with 500Hz step signal, the time to complete one revolution to reach 3.2s,
translating to a speed of 18.75RPM. A further decrease in angular speed is to be
expected when the motor would be loaded.
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Figure 4.6: Oscilloscope Screenshot of Microstepping Current and Step Signals

Conclusion

The preceding experiment showed that, in practice, the stepping motor behaved
as expected and brought evidence that supported the use of microstepping. Even
though the measured current consumption was higher in this operating mode, the
smaller step size, that would imply an increased point cloud density, and the lower
vibration levels were found to be advantages indispensable for the 3D scanner.

4.4 Servo Motor Experiment

The experiment was performed with the objective of testing the servo motor that
is to be employed in the 3D scanner. In the experiment, servo motor character-
istics such as current consumption, frequency, and control signal waveform were
analyzed and compared with the given information. Furthermore, the aim was
also to determine the quiescent and stall current due to them being unspecified, to
ensure that the battery supply is enough to drive the servo motor along with the
rest of the components for a significant amount of time. Another purpose of the
experiment was to ensure that the servo motor moves to the specified position.

The setup of the experiment included supplying the control signal to the motor
using Arduino Uno (powered by a laptop) and then plotting the current supply
waveform along with the PWM control signal on an oscilloscope. During the ex-
periment, the servo shaft position was varied from 0 to 180◦ (employing the Servo.h
library for the process), to determine the change in pulse width for the correspond-
ing positions. Additionally, to find the current consumption of the servo motor, two
cases were considered based on the external force applied on the motor.

In case 1, the current and input signal were analyzed when no external force
was applied on the servo shaft and when the shaft was at the input position. Fig-
ure 4.7 for this case, shows a cyan line representing the quiescent or idle current
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with the measured value of 60mA, and a yellow waveform (the input signal) with
a frequency of 50Hz (20ms period).

Figure 4.7: Oscilloscope Screenshot of Servo Current and Control Signal for Idle Current

In case 2, the same signals were plotted, but an external force was applied on
the shaft of the motor. As it can be seen in Figure 4.8, each command pulse is
followed by a pulse of current as the servo motor tries to push back to retain its
position. This current is the stall current and was measured up to a maximum of
520mA, being directly proportional to the force applied.

Figure 4.8: Oscilloscope Screenshot of Servo Current and Control Signal for Stall Current

Conclusion

As specified above, the quiescent current and the stall current for the servo motor
operating at 5V are 60mA and 520mA respectively. The stall current conveys the
maximum current the battery needs to supply for the servo, which is less than the
current specified in power estimation for the scanner (see Section 3.8). Moreover,
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the experiment also illustrated that, in practice, the servo motor attains the ex-
pected shaft position when given the control signal with presumed pulse widths.

4.5 3D Modelling

As mentioned in previous sections, the system to be developed utilizes a 1D LiDAR
sensor for obtaining the distances to the neighboring surfaces and thus should
be maneuvered using motors to scan these areas. Although, the servo and the
stepper motor are responsible for rotating the LiDAR, a structure was still required
to hold the LiDAR in place in conjunction with the motors. Moreover, due to
the significance of precise measurements from the laser scanner, the supporting
structure should be capable of being mounted on the stepper motor and move
along with it for acquiring accurate point clouds. In addition, the structure should
be lightweight so that there is no substantial increase in the torque needed to spin
the LiDAR.

3D printing presented itself as a solution that would satisfy the mentioned
conditions and it allowed us to customize the design for the laser scanner. Mainly,
two parts were designed using AutoCAD: first, a "U"-shaped mount that can be
attached to the shaft of the stepper motor, so that it rotates along with its each
step, for a precise azimuth angle. Furthermore, it also supports the servo motor
on one of its parallel vertical surface, which is then connected to the second part,
i.e., simply a base that holds the LiDAR. This arrangement allows the movement
of LiDAR simultaneously with the servo motor, ensuring an accurate inclination
angle. Figure 4.9 illustrates this simple design in conjunction with the components.

Figure 4.9: Structure Design With Components
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4.6 Hardware Implementation

The working of the 3D scanner is the consonance between its hardware and soft-
ware elements. Accordingly, this section will focus on the implementation of the
scanner’s hardware element which comprises the components analyzed in Chap-
ter 3. The aim of the system is to create a point cloud, which is a set of points in
three-dimensional space.

4.6.1 Coordinate Acquisition

Each point scanned by the developed device should have a unique location at
which it could be placed when plotting the point cloud. Thus, the scanner should
follow a coordinate system to express the position of its scanned points. This
system is the spherical coordinate system which defines the position of its points
in three-dimensional space by their radius, i.e., the distance from the origin, the
inclination angle and the azimuth angle (see section 3.7). As a result, the 3D scan-
ner is simply an amalgamation of components that generate the required data to
represent the position in spherical coordinates.

Due to the line of sight nature of LiDAR Lite v3HP, the 3D scanning apparatus
developed utilizes a stepper and a servo motor to move the LiDAR in the horizontal
and vertical plane, respectively. Rotating the LiDAR in both planes grants a scan
coverage that is equivalent to the volume of a sphere whose radius is equal to
the maximum distance measured. Moreover, in order to get the first index, i.e.
the radius, the scanner utilizes the LiDAR sensor whose location along with the
whole setup can be considered at the origin of the three-dimensional space in
which the point cloud is plotted. The distance to the point within the line of
sight of LiDAR serves as the radial coordinate with respect to the origin. The next
index, the inclination angle, is the polar angle measured from the zenith direction
whose orientation is perpendicular to the base of the scanning apparatus. The
servo motor is responsible for moving the distance sensor vertically. Hence, the
angle at which LiDAR it is positioned by the servo, that is, the servo angle, accounts
for the inclination index of the said point. The last index, the azimuth angle, is the
angle that is traversed in the horizontal plane. The rotation of LiDAR in this plane
is due to the stepper motor and thus the angular rotation of the stepper would
provide the third and final coordinate.

An example could further illustrate and summarize the coordinate acquisition:
if at a particular instance during the scan, the servo angle is θ, the angular coverage
of the stepper until that instance is φ, and the distance to the point on an external
surface lying in the optical axis of the LiDAR is r, then the spherical coordinates
for the said point are expressed as (r, θ, φ). Figure 4.10 illustrates this example.
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Figure 4.10: Spherical Coordinate Acquisition Using LiDAR

4.6.2 Movement Description

The previous subsection discussed the acquisition of coordinates for a single point,
but to create a point cloud that is analogous to the real physical surroundings,
the 3D scanner should gather a large amount of such points over entire regions,
covering the external surfaces of the entities exposed to its range. Accordingly, the
LiDAR is maneuvered by the motors in a fashion that grants it a sphere of activity.
Nonetheless, to get a considerable amount of points, at least one trio of coordinates
must be registered at every step or at regular intervals of this three-dimensional
motion. To achieve such mobility, the servo motor and the stepper motor move in
correlation with each other, such that, with every step of the servo motor (attached
to LiDAR) the stepper motor completes one full 360◦ rotation. That means the
motion of servo motor shifts, with each step angle, the height of the horizontal
plane in which the distance readings are being registered, and the stepper motor
rotation ensures the attainment of all the points encircling the setup in that plane.
In addition, the total number of full rotations of the stepper motor would be equal
to the number of steps the servo motor will move.

4.6.3 Power Transmission During Rotation

The fact that the structure holding the servo motor and LiDAR should rotate along
with the stepper motor possesses an issue as the cables transmitting power and
electric signals connected to the rotating structure would tangle around and dis-
connect from the stationary microcontroller and battery. To solve the problem, the
structure can be attached to the stepper motor using two methods.

First, using a slip ring, which is an electromechanical component that allows
the connection between a stationary and a rotating structure [69], would be a good
solution, but employing it would necessitate its placement at the pivot point, i.e.,
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the shaft of the stepper motor. As a result, the rotating structure cannot be directly
mounted on the motor shaft and would require the use of gears to transmit torque
from the motor to it. Moreover, the gears along with a new holding structure
need to be 3D printed for custom requirements and using them can result in mis-
alignment of rotation angle between the motor and the rotating part, henceforth
effecting the azimuth coordinate.

The second method involves setting the structure directly on top of the motor
shaft, eliminating the utility of gears. For the issue with entanglement of wires, the
microcontroller would be programmed to rotate the stepper motor alternatively
in clockwise and counterclockwise direction. Alternating the direction of rotation
would cause the wires to first entwine around the shaft but, changing the direction
in the next rotation would impel the wires to untangle, thereby returning to their
initial state. The process transpires until the scan is complete. The latter method is
implemented for the 3D laser scanner, as it is much simpler due to its implemen-
tation through software and adds no extra components as compared to the first
method.

4.7 Arduino Programming

This section will focus on how the hardware components and the data transfer is
controlled by the Arduino for performing a 3D scan. The following steps chrono-
logically explain the process:

1. The scans are based on the user input received from the interface designed
in MATLAB (interface discussed in Section 4.8). Once the interface has reg-
istered the input, it sends those values to Arduino. Consequently, the uC is
programmed to assign those input values to their proper variables which are
utilized for the remaining process to control the scanner. The following list
specifies the variables received from the user:

• Servo start position: The angle with respect to the positive z-axis, at
which the servo should position itself before the scan starts.

• Servo stop position: The angle, with respect to the positive z-axis, at
which the servo should stop and cause the scan to cease.

• Servo step angle: The angle by which the servo shaft should rotate
when it changes its position

• Stepper step division: The amount by which the steps of the stepper
motor should be divided, i.e., the microstepping ratio.

• LiDAR readings per stepper step: The number of distance readings
LiDAR should perform for each step of the stepper.
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2. Now that the input has been received, an initialization procedure is done
that measures the time taken by the scanner to complete 2 servo steps (2
full stepper rotations). The time measured for this procedure is then sent to
MATLAB where the total time is estimated.

3. Once the scan time has been sent to MATLAB, the servo is moved back to
the servo start position, after which the actual scan starts, with the servo
position being incremented for every full stepper rotation. Furthermore, for
each step the stepper motor rotates, LiDAR acquires the distance to the point
in its line of sight. When the distance is obtained, it is then printed on the
serial monitor along with the number of steps moved by stepper motor and
the servo position for that point. These three entities are printed on the
serial monitor in the form of a row vector with the first column containing
the stepper motor steps, second column for the servo position, and the third
column showing the LiDAR distance. After the completion of the scan, the
total output would be an n-by-3 matrix where n indicates the total number of
points. By printing on the serial monitor, the point data is being transferred
through serial communication to MATLAB, where it can be read from the
serial port. Figure 4.11 shows an example of data transferred to MATLAB.

Figure 4.11: Point Data Sent Through Serial Communication

4. A condition is checked every time the servo position is incremented: it is
verified whether the current servo position is greater than the servo stop
position. If the condition is false, the scanning process is continued. However,
if the condition is true, then it signifies that the scan is complete and all
the points for that particular region have been registered and could then be
plotted into a point cloud using MATLAB.
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Arduino Code Flowchart

The chart shown in Figure 4.12 illustrates the overall code flow for a scan. The full
Arduino code represented by the flowchart can be found in Appendix A.

Figure 4.12: Arduino Code Flowchart
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4.8 MATLAB Programming

In Section 4.1, the very basis of data transfer and plotting was illustrated without
any apparent connection to the 3D scanner which represents the practical part of
this project. The present section is meant to describe in a detailed manner the
software component of the developed system which deals with data processing.

4.8.1 User Interface

A simple user interface was created using the MATLAB App Designer environment
(Figure 4.13). The user is offered the possibility to decide upon different scanning
parameters, which are the very ones presented in Section 4.7.

Figure 4.13: The 3D Scanner User Interface in MATLAB App Designer

As shown in the figure, the interface consists of five numeric fields where the
user can type the desired values, as well as a button which triggers the scanning
process. It should be stated that the code for displaying the fields and buttons on
the interface was auto-generated by App Designer, but their functions needed to
be programmed (in other words, what happens when a value is written to a field
or the button pressed). The values introduced in the numeric fields are retained
in distinct variables which are then saved in a common MAT-file. In order for the
values to be recognized at the receiving end, and assigned to the right variables
in the microcontroller code, each number is multiplied by 10 and a different digit
is added to the results. In case of the parameters that can be input as floating-
point values (the ones related to the servo), the numbers are multiplied with the
minimum power of 10 such that they become integers, and then they are "encoded"
as well using the described method. The "Start Scan" button simply runs the main
MATLAB script.
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Point Cloud Density

The user input discussed in Section 4.8 has a direct impact on the total number of
points to be acquired during a scan. This in turn affects the point cloud density for
a scanned region. Equation 4.1 below shows the relation between the user input
and the number of points.

p =

([
stop− start

step

]
+ 1

)
· 200 ·m · n (4.1)

where:
p = number of points in the resulting point cloud
m = microstepping ratio
stop = servo stop angle
start = servo start angle
step = angle traversed by the servo in one step
n = number of LiDAR readings per stepper step

4.8.2 Main Script

The main MATLAB script is based on the snippets included in Section 4.1. Initially,
the file where the user input was saved is loaded into the workspace. Afterwards,
the script establishes the serial communication with Arduino, as previously shown,
with the command fopen() resetting the uC. It sends the input variables as strings
using the fprintf() function and, after Arduino receives the input, it initializes
the scan. Starting form this point, read operations are performed. The read data
consists of: the duration of the test scan, i.e., the time it takes the stepper shaft
to compete two full revolutions (which is immediately used, along with the rele-
vant input parameters, to estimate the duration of the entire scan), and the matrix
containing all the raw data required to construct the point cloud.

When the communication is interrupted, the spherical coordinates are extracted
from the transposed data matrix and then the spherical-Cartesian coordinate con-
version takes place. The result is an n-by-3 matrix containing a collection of data
points in rectangular coordinates, to which the name xyzPoints was assigned. Sav-
ing this matrix to a different MAT-file every time a scan is performed is crucial if
the data needs to be consulted in the future. This can be accomplished by creating
a file name using the output of the function now, which returns the date and time
corresponding to the moment when it is called, and sprintf, which formats the
data given as argument into a string. Displaying the point cloud is done using
the same code as in Section 4.1, but before plotting the data points, the function
pcdenoise() is utilized to remove the outliers.
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A flowchart explaining the MATLAB code is shown in Figure 4.14 and may be
of help in the process of better understanding the main script. If consulting the
actual code shall be needed, please see Appendix B.
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Figure 4.14: Flowchart of MATLAB Code
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4.8.3 Displaying Prior Point Clouds

In case a previous scan is desired, a separate, very short script, shall be used. The
script loads an xyzPoints matrix to the workspace and creates a point cloud object
using the loaded data. After filtering is performed, the point cloud is displayed.
The name of the file created at the time of taking the respective scan needs to be
added in the code.

4.9 Schematic

The schematic shown in Figure 4.15 illustrates the utilized circuit with all the com-
ponents that constitute the 3D laser scanner.

Figure 4.15: Circuit Schematic for 3D LiDAR Scanner
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4.10 Prototype

The final result of the implementation of the hardware component of the project is
the developed 3D LiDAR scanner shown in Figure 4.16.

Figure 4.16: Final Setup of the Developed Prototype
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Testing

5.1 Motivation

Throughout this report we have explored the applications of 3D laser scanning
and examined the components and the theory of operation of our own 3D laser
scanner. The only aspect remaining is the proof of its applicability. Therefore, this
section will concentrate on the procedure and results of the testing session carried
out in order to validate and assess the developed device.

5.2 Selection of Testing Area

The testing location plays a crucial role and to determine an appropriate place we
scanned a variety of locations using our apparatus. These locations differed in their
dimensions and aspects such as windows, furnishings etc. The analysis of the scans
from each location revealed various factors affecting the final results. First, if any
one of the dimensions of the scanned space is significantly greater than the rest of
the dimensions, then the distribution of points in the resulting point cloud is non-
uniform over the surfaces and makes the further assessment problematic. Second,
the presence of specular surfaces affects the quality of the scan. When the scanner
sweeps over a window, for example, it scans beyond it and captures unwanted
regions outside the target zone for that scan. Surfaces like mirrors, on the other
hand, reflect the transmitted beam away and are not registered. Third, the scanned
surroundings should contain heterogeneous entities which could later be used to
draw comparison between the real physical characteristics and the point cloud.
Accordingly, based on the aforementioned factors, a final place was chosen for
further testing: a rectangular room with nearly equal length and width. The room
contains a single window which would be covered during the scan and cites as an
example of a residential space comprising diverse entities such as sofa, bed, book

57
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shelf, chairs etc. The pictures of the final testing location are shown in Figures 5.2
and 5.3 and will be utilized in the forthcoming sections as reference for drawing
conclusions. Consequently, all the testing was conducted in this location.

5.3 Setup

The setup of the experiment includes positioning the scanning apparatus at the
approximate center of the room with the scanner located at a height of 82cm. This
was done so that all the surfaces ambient to the scanner are equidistant, ensuring
uniform surface point distribution. Throughout the experiment, the system was
powered using a 12V-2.4Ah battery. As for the contents of the testing session, the
experiment consisted of five different scans with varied parameters. For each of
the five scans, the position of the scanner remains unchanged along with the servo
motor range, defined by servo start and servo stop being 35◦ and 125◦ respec-
tively. This angular range was decided in order to avoid scanning the monotonous
surfaces of the roof and floor of the chamber. The other parameters, namely mi-
crostepping ratio, servo step and LiDAR readings, were altered for each scan to
examine the effects of these thresholds. Table 5.1 shows the settings for each pa-
rameter for all five scans.

Table 5.1: Scanning Parameters

3D Scanner Parameters
Scan Number

1 2 3 4 5
Servo Angle Starting Position (degrees) 35 35 35 35 35
Servo Angle Ending Position (degrees) 125 125 125 125 125

Servo Step Angle (degrees) 0.25 1 1 0.25 1
Microstepping Ratio 8 8 1 1 8

LiDAR Readings per Stepper Step 1 3 1 1 1

5.4 Performed Scans

Once the scan is complete, MATLAB automatically plots the point data onto three-
dimensional space for the user to see the results. The MATLAB plot corresponding
to Scan 2 can be seen in Figure 5.1. From the picture, it is clear that, although the
plotting process is automatic, it is difficult to discern the elements of the picture
using MATLAB. Furthermore, MATLAB lacks proper tools for navigating through
a point cloud, due to the fact that the software’s plots are not specifically designed
for 3D scanning purposes. Correspondingly, a different software named MeshLab,
which is more suited for handling point clouds, was utilized for analyzing the
collected data points. However, to work with MeshLab, the point data type needs



5.4. Performed Scans 59

to be changed and loaded to the software manually. All the subsequent pictures
are taken within MeshLab and present the results of the scans performed.

Figure 5.1: Scan 2 Point Cloud in MATLAB

Resemblance

The point clouds in Figures 5.4 and 5.5 (Scan 1) illustrate the side-to-side compar-
ison between the digital representation of the testing area and the actual location
shown in Figures 5.2 and 5.3. It can be observed that the geometry of the objects,
as well as their position in the room, is preserved in the scan. This resemblance
of the constructed point cloud with the real image proves the system’s ability to
construct a digital model from physical surroundings.

Scan 1

For the sake of clarity, Figure 5.4 has been enlarged and can be seen in Figure 5.6.
The point cloud for this scan is a result of 538016 points, obtained after filtering
the 577600 points acquired throughout the room, and has the highest density from
all the scans performed during the session. Due to the high density, the cluster of
points relatively resembled the surfaces, making it easier to discern the layout of
the scan. However, with the increased number of points, the time taken to acquire
the coordinates also increased and thus this scan took the longest to complete,
almost 71 minutes. Furthermore, the power consumption was calculated based on
the current measured with an ammeter while the device was performing the scan.
The instrument indicated a value of 0.233mA. Therefore, the total power consumed
was 2.796W.
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Figure 5.2: Testing Area (Side A) Figure 5.3: Testing Area (Side B)

Figure 5.4: Scan 1 Point Cloud (Side A) Figure 5.5: Scan 1 Point Cloud (Side B)

Scan 2

The parameters defining the servo step angle and the number of LiDAR readings
were changed for the second scan and the picture in Figure 5.7 shows the resulting
filtered point cloud with 423364 points (out of 436800 acquired points). Although
the visual difference between the point cloud of Scan 1 and Scan 2 is not very
noticeable, there is a discrepancy of 114652 points between the two. The reduction
in the number of points caused the scan to complete in around 36 minutes, which
is substantially less then the time taken for the first scan.
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Figure 5.6: Scan 1 Point Cloud (Side A), Enlarged

Figure 5.7: Scan 2 Point Cloud (Side A)
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Scan 3

The third scan took the least amount of time and has the lowest density with a point
count of 16708 points, filtered from an initial data set of 18200. A picture of the
output is shown in Figure 5.8. For this picture, the point size had to be increased for
the purpose of the report, as the point cloud obtained was indistinguishable using
the default size. It is obvious that these points are very far apart as compared
to the other two scans. This is due to the increased servo step and decreased
microstepping ratio as well as the number of LiDAR readings. Furthermore, the
scanned entities are distinctly amorphous, in contrast to the first two scans.

Figure 5.8: Scan 3 Point Cloud (Side A)

The point clouds from the fourth and fifth scan closely resemble the results
from the third and second scan respectively, hence these remaining scans will not
be discussed any further in this chapter. Nevertheless, the pictures of their gener-
ated point clouds are included in Appendix C.

5.5 Scanning Time

After comparing physically recognizable changes between the products of 5 differ-
ent scanning modes, the time taken to perform the scans should also be considered
and analyzed. Table 5.2 shows the estimated time (theoretically calculated) and the
practical (measured) time for each individual scan.
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Table 5.2: Estimated and Measured Scan Duration

Scanning Time
Testing Session Number

1 2 3 4 5
Theoretical (min) 60.17 33.12 2.72 10.22 15.16

Practical (min) 70.51 35.58 2.92 10.56 16.11

At first sight, the time has varied radically among all the scans. For example, in
Scan 1, which delivers the highest amount of points, the time spent on scanning is
equal to 70.51 minutes. However, Scan 3, situated at the opposite end with respect
to density, took only 2.92 minutes. From this point of view, it can be inferred
that the scanning time directly depends on the point cloud density, which itself
is affected by the selected scanning parameters (see Table 5.1). So, if the user
desires a dense 3D digital point cloud, suitable parameters should be selected on
the interface, but the time taken for scanning will be longer accordingly.

From the table, we can also see that in all the scans, the practical time is un-
doubtedly bigger than the theoretical one. The actual time can be considered pre-
cise because it was measured internally (using tic toc in MATLAB). In earlier
experiments (see Section 4.2), it was observed that LiDAR’s frequency is changing
depending on the distance to the object the sensor is facing – the longer the dis-
tance to the object, the higher the frequency of the sensor. Therefore, the scanning
time could be affected by the change in distance between LiDAR and the scanned
entities.

5.6 Distance Measurement

While looking at the point cloud, it is hard to see if there are some changes in
size and distance between certain objects inside the scanned room, compared to
the actual environment. However, the goal is making the 3D scanner precise in
all the aspects, so comparing the point cloud in terms of size is also a necessary
part of testing. Thus, the distance between 2 opposite walls (the ones adjacent
to the sofa and the bed) was measured as they are parallel to each other. For
obtaining the distance in the actual room, we used a simple tape measure that
indicated 280.5cm. In the case of the point clouds, assuming that the size and
distances are the same in all obtained scans, the distance was measured only on
the point cloud of Scan 1. MATLAB did not offer this possibility, so MeshLab was
utilized once again. Through this software, the distance can be simply found by
selecting 2 points manually. The result obtained was 274.78cm, which gives an
absolute error of 5.72cm. Even though the relative error is arguably small (2.04%),
there are several factors that could affect this imprecision in measurement. Firstly,
the LiDAR datasheet warns that the readings under 2m can lead to errors of up
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to 5cm. So, the sensor is measuring the distance until each wall, therefore, the
LiDAR distance is surely smaller than 200cm, which puts the error of 5.72cm close
to the indicated limit. A second reason might be the inaccurate measurement in
MeshLab. As stated before, this software allows to measure the distance between 2
points, but this manual selection can lead to errors. The problem could arise when
a line drawn between 2 selected points is not perpendicular to the corresponding
walls.

Conclusion

The aim of the testing session was to prove the functionality of the 3D LiDAR
scanner developed by the project group and to derive the conclusion regarding the
project. On these grounds, the experiments have been successful: the congruence
between the actual pictures and the resulting point clouds proves the competence
of the 3D scanner for digitization of tangible structures. From the scans, it suffices
to assess that the time consumed for completing a full scan is proportional to the
number of points acquired during the scan. Although the time difference and the
barely noticeable discrepancy between the first two scans present the second scan
as a better mode and dismiss the requirement for a very dense point cloud, the
density specification is still based on the application. For instance, the points in
the first point cloud are more uniformly distributed over the surfaces as compared
to the distinct circular patterns in the second scan. This uniform distribution covers
larger extents of the scanned surface, providing more data for surface reconstruc-
tion and other later procedures. The third scan was fast, but provided very limited
information. The testing session justifies the use of the obtained point clouds for
taking distance measurements - although not very accurately - of scanned struc-
tures. As for the power consumption during operation, it was considerably less
than the one estimated in Section 3.8. This was due to the estimation being done
for the worst case scenario.
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Discussion

After all the research and testing performed, we can conclude that the goals stated
in the problem analysis were achieved: our system is capable of obtaining the
digital image of a closed room. But this does not mean that the system is free of
flaws or improvable features. The upgrade of the LiDAR sensor to 2D or 3D, for
example, could improve the general performance of the system greatly, as it would
allow the sensor to obtain more than 1 point at a time. The point clouds obtained
would be sharper and the data rate would increase, therefore the total elapsed
time would be reduced. In addition, the general precision of the system would be
optimized, making it more reliable for distance measuring within the point cloud.

Although the general performance should not be affected by it, some of the
working principles of the system could also be changed in order to make it more
orthodox. It is the case of the rotating platform where the LiDAR sensor stands:
the usage of a slip ring would enable its continuous rotation in the xy-plane. The
group tried to include such a component, but as explained in Subsection 4.6.3
its implementation could not be performed. For improved user-friendliness and
safety, the system could also benefit from a 3D-printed casing and a proper tri-
pod that does not interfere with the LiDAR sensor. This would make the overall
aesthetics better (less prototype-like), avoid accidents involving liquids to spoil the
device and allow the user to fit the height of the sensor to their specific needs. We
cannot forget about the range problem: point cloud density reduces quadratically
with distance. A possible solution to this could be making a fast study of the size
of the scanned room and optimize the amount of scanned points to it.

Another feature that could be implemented in the future would be the inclusion
of an SD-card for data transfer. For this project, we decided to send the points from
the microcontroller directly to the PC, so data writing would not impact the elapsed
time of the scans. A faster and more sophisticated system would make this extra
elapsed time tolerable, so all the data could be written in an external memory for
its later processing. Therefore, the system would have a backup of the scanned
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data and it would be possible to pause and resume the scan at any moment, as
the device would know the coordinates of the last scanned point. The inclusion
of an uninterruptible power supply would also ensure that no external agent such
as battery life can bring the scan to a premature end, and would give the user the
choice of using both the power grid or the included battery.

In the field of accuracy, the current system supposes that the stepper and the
servo motor move flawlessly, that is, there is no error in their angular positioning.
This assumption, especially considering the quality of the used components, is
rather naive, and therefore it would be necessary to use an encoder as part of a
feedback loop which ensures that the motors move exactly as they are supposed
to. In fact, it should be noted that the servo motor utilized in the project is equipped
with analog feedback, but due to its inaccuracy and its undesirable effects on the
scan duration, it was decided to elude the usage of this feature. Moreover, instead
of a servo, a second stepper motor could be employed, which would provide a
higher resolution, resulting in a denser point cloud. We must also consider that the
obtained digital image in the form of point cloud can be inconvenient for certain
environments. On the one hand, there is the perspective problem: we cannot
obtain 360◦ data of the scanned objects, especially if they are behind a certain
obstacle. Solving this issue would involve taking readings from different angles
and logging the position where those readings were made from. Furthermore, the
surface reconstruction topic is rather complex: the understanding of the scientific
works found requires a solid knowledge in computational geometry that the group
lacks, so the obtained results for the morphology of our data are far from ideal.
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Conclusion

The present report detailed a particular TLS method of digitizing the interior of
buildings using a microcontroller-based 3D scanner whose main characteristic is
the concurrent operation of a 1D LiDAR, a stepper motor and a servo motor. A
comparison of the project specifications (Section 2.10) and the achieved results can
serve as a way to evaluate the success of the project.

The developed device utilizes actuators to guide the distance sensor in such a
fashion that permits the detection of its surroundings. Sufficient data is provided
by the hardware components to generate a graphical representation of the mapped
environment - in the form of a point cloud - in MATLAB. The program responsible
for data processing and point cloud visualization was designed to allow taking
successive scans without overwriting any prior data. Operating thresholds for
the apparatus have been implemented through a MATLAB user interface, where
desired values of the scanning parameters can be input. A button press initiates a
new scan, with no further human assistance needed until the output is produced.

The system was tested in an appropriate environment and the results (see
Chapter 5) proved the compatibility between hardware and software and demon-
strated that the functionality is the intended one. The 3D data acquisition was
realized through the rotation of LiDAR in two planes, a technique which guaran-
teed the procurement of the spherical coordinates of the points located within the
range of the sensor. With a certain combination of parameters, a dense point cloud
clearly showing the scanned objects was obtained. Notwithstanding that further
improvements are undoubtedly required, it can be inferred that the current state
of the equipment is satisfactory and fulfills, therefore, the objective of the project.
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Appendix A

Arduino Code

1 /***Libraries***/
2

3 #include <LIDARLite.h> // Include Lidar library
4 #include <Wire.h> // Include I2C library
5 #include <Servo.h> // Include Servo library to control servo motor
6

7 /***Constants and Global Variables***/
8

9 /*LiDAR*/
10

11 LIDARLite Lidar; // Create LiDAR object
12 int readings; // No. of LiDAR readings per stepper step
13

14 /*Servo*/
15

16 #define SERVOCTL 9 // Servo control pin
17

18 Servo RCServo; // Create servo object
19 float servopos; // Servo current position
20 float servostart; // Servo start position
21 float servostop; // Servo end position
22 float servostep; // Servo step angle (angle by which the servo moves)
23 int servoflag = 0; // Keeps track of the number of steps the servo takes
24

25 /*Stepper*/
26

27 #define STP 2 // Step pin
28 #define DIR 3 // Stepping direction pin
29 #define MS1 4 // Microstep selector 1 pin
30 #define MS2 5 // Microstep selector 2 pin
31 #define EN 6 // Enable pin
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32

33 #define STEPS 200 // Default number of steps
34

35 int resolution; // Microstepping resolution
36

37 /***Functions***/
38

39 void getInput(); // Get input parameters from user
40 unsigned long getScanTime(); // Get the duration of two full stepper

rotations
41

42 void servoRotate(); // Rotate servo
43

44 void stepperRotate(); // Rotate stepper
45 void stepperCW(); // Rotate stepper in clockwise direction
46 void stepperCCW(); // Rotate stepper in counter clockwise direction
47 void microstepSelect(); // Select stepping resolution
48

49 void printData(int, int); // Print the data on the serial monitor
50

51 void setup() {
52 Serial.begin(115200); // Set data transfer rate
53

54 getInput(); // Get the input from MATLAB interface
55

56 Lidar.begin(0, true);
57 Lidar.configure(0);
58 Serial.print(’*’);
59

60 //Setting stepper motor driver pins as output
61 pinMode(STP, OUTPUT);
62 pinMode(DIR, OUTPUT);
63 pinMode(MS1, OUTPUT);
64 pinMode(MS2, OUTPUT);
65 pinMode(EN, OUTPUT);
66 digitalWrite(EN, LOW); // Enable driver
67 microstepSelect();
68

69 RCServo.attach(SERVOCTL); // Attach the servo to SERVOCTL
70 servopos = servostart; // Set the starting servo position to

servostart
71 servoflag = 0;
72 RCServo.write(servopos); // Move the servo to start
73 delay(1000);
74

75 unsigned long scanTime = getScanTime();
76 Serial.print(’*’);
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77 Serial.print(scanTime); // Print scantime on the serial
78 Serial.print(’*’);
79 delay(1000);
80 }
81 /* Main loop. Call the function that rotates the servo and
82 * stop the scanner when the servo reaches the end point
83 * specified in the interface.
84 */
85 void loop() {
86 servoRotate();
87 if(servopos > servostop) {
88 Serial.print(’*’); // Print the terminator character
89 while(1);
90 }
91 }
92 /* Get the input form MATLAB. The input parameters are sent as strings.
93 * Input is read and "decoded" in order to perform the correct
94 * assignments of values.
95 */
96 void getInput() {
97 String input;
98 unsigned long param = 0;
99 bool f1, f2, f3, f4, f5;

100 f1 = 0;
101 f2 = 0;
102 f3 = 0;
103 f4 = 0;
104 f5 = 0;
105 while (1) {
106 if (Serial.available() > 0) {
107 input = Serial.readString();
108 param = input.toInt();
109 switch (param % 10) {
110 case 1:
111 servostart = param / 10 / 100.0;
112 f1 = 1;
113 digitalWrite(led1, HIGH);
114 break;
115 case 2:
116 servostop = param / 10 / 100.0;
117 f2 = 1;
118 digitalWrite(led2, HIGH);
119 break;
120 case 3:
121 servostep = param / 10 / 100.0;
122 f3 = 1;
123 digitalWrite(led3, HIGH);
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124 break;
125 case 4:
126 resolution = param / 10;
127 f4 = 1;
128 digitalWrite(led4, HIGH);
129 break;
130 case 5:
131 readings = param / 10;
132 f5 = 1;
133 digitalWrite(led5, HIGH);
134 break;
135 }
136 }
137 if (f1 && f2 && f3 && f4 && f5) break;
138 }
139 }
140 /* Measure the time taken to scan for two servo steps
141 */
142 unsigned long getScanTime() {
143 unsigned long time1 = millis(); // Start timer
144 servoRotate(); // Move servo two steps
145 servoRotate();
146 servopos = servostart; // Set the servo position back to start
147 unsigned long time2 = millis() - time1;
148 return time2; // Return time
149 }
150 /* Rotate thes servo with the specofoed step and, for each
151 * servo step, rotate the stepper. Keep track of the servo
152 * position and the number of steps the servo has moved.
153 */
154 void servoRotate() {
155 RCServo.write(servopos);
156 delay(500); // Delay to let the servo reach the

position
157 stepperRotate();
158 servopos += servostep;
159 servoflag += 1;
160 }
161 /* Rotate the stepper 360 degrees. Based on whether
162 * the number stored in servoflag is even or odd, the
163 * rotation is either clockwise or counterclockwise.
164 */
165 void stepperRotate() {
166 if (servoflag % 2 == 0) {
167 stepperCCW();
168 } else {
169 stepperCW();
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170 }
171 }
172 /* Rotate the stepper clockwise. A loop causes the movement by
173 * creating as many low-to-high transitions as the number of
174 * microsteps selected. For every step, LiDAR takes the number of
175 * distance readings specified by the user.
176 */
177 void stepperCW() {
178 int r;
179 digitalWrite(DIR, LOW);
180 for(int i = 1; i <= STEPS * resolution; i ++) {
181 digitalWrite(STP,LOW);
182 delay(1);
183 digitalWrite(STP,HIGH);
184 delay(1);
185 for(int j = 0; j < readings; j ++) {
186 r = getLidarData(i);
187 printData(i, r);
188 }
189 }
190 }
191 /* Rotate the stepper counterclockwise. The function is
192 * the same as stepperCW(), but the direction is changed.
193 */
194 void stepperCCW() {
195 int r;
196 digitalWrite(DIR, HIGH);
197 for(int i = STEPS * resolution; i > 0; i --) {
198 digitalWrite(STP,LOW);
199 delay(1);
200 digitalWrite(STP,HIGH);
201 delay(1);
202 for(int j = 0; j < readings; j ++) {
203 r = Lidar.distance();
204 printData(i, r);
205 }
206 }
207 }
208 /* This function sets the logic for MS1 and MS2 in order to create the
209 * desired microstepping resolution.
210 */
211 void microstepSelect() {
212 switch(resolution) {
213 case 1:
214 digitalWrite(MS1, LOW); // logic to full
215 digitalWrite(MS2, LOW); // stepping resolution
216 break;
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217 case 2:
218 digitalWrite(MS1, HIGH); // Set logic to half
219 digitalWrite(MS2, LOW); // stepping resolution
220 break;
221 case 4:
222 digitalWrite(MS1, LOW); // Set logic to 1/4
223 digitalWrite(MS2, HIGH); // microstepping resolution
224 break;
225 case 8:
226 digitalWrite(MS1, HIGH); // Set logic to 1/8
227 digitalWrite(MS2, HIGH); // microstepping resolution
228 break;
229 }
230 }
231 /* This funciton prints the stepper motor steps in coloumn 1,
232 * servo position in coloumn 2 and LiDAR readings in column 3
233 * of the serial monitior. The serial monitor is then read using
234 * MATLAB which inputs the data into a 960000x3(max) matrix.
235 */
236 void printData(int stepp, int radius) {
237 Serial.print(stepp); // Print each step of stepper motor
238 Serial.print(" ");
239 Serial.print(servopos); // Print the servopositon in degrees
240 Serial.print(" ");
241 Serial.print(radius); // Print the distance per each stepper step
242 Serial.print("\n");
243 }
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MATLAB Code

B.1 User Interface

1 % The interface was created in MATLAB App Designer. This MATLAB feature
2 % provided the graphical components (e.g.: buttons) with which the user
3 % can interact, but the "result" of the interaction had to be programmed.
4 % Only this code is shown below.
5 % The interface consists of 5 numeric fields, where the user has to
6 % select the following parameters:
7 % angle at which the servo should start : servostart
8 % angle where the servo should stop : servostop
9 % angle by which the servo moves : servostep

10 % number to divide the default stepper step by : microstepping
11 % number of LiDAR readings per stepper step : readings
12 % These values need to be sent to Arduino and for
13 % them to be recognized at the receiving end, they are multiplied with
14 % an adequate power of 10, added with a distinctive digit and then
15 % converted to character arrays.
16 % All the variable are saved to a common .mat file that can be loaded
17 % in the main script
18

19 servostart = app.ServoStartPositiondegreesEditField.Value;
20 servostart = num2str(servostart * 1000 + 1);
21 input_file = ’input.mat’;
22 save(input_file,’servostart’,’-append’);
23 %%
24 servostop = app.ServoStopPositiondegreesEditField.Value;
25 servostop = num2str(servostop * 1000 + 2);
26 input_file = ’input.mat’;
27 save(input_file,’servostop’,’-append’);
28 %%

80
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29 servostep = app.ServoStepAngledegreesEditField.Value;
30 servostep = num2str(servostep * 1000 + 3);
31 input_file = ’input.mat’;
32 save(input_file,’servostep’,’-append’);
33 %%
34 microstepping = app.StepperStepDivision124or8EditField.Value;
35 microstepping = num2str(microstepping * 10 + 4);
36 input_file = ’input.mat’;
37 save(input_file,’microstepping’,’-append’);
38 %%
39 readings = app.LiDARReadingsPerStepperStepEditField.Value;
40 readings = num2str(readings * 10 + 5);
41 input_file = ’input.mat’;
42 save(input_file,’readings’,’-append’);
43

44 % Additionally, there is a button which starts the scan when pressed
45 run(’full_code.m’);

B.2 Main Code

1 clc % Clear command window
2 clear % Clear workspace
3 close all % Delete all figures
4

5 % Load the variables that store the user input into the workspace
6 load(’input.mat’);
7 % Connect to Arduino. Send the user input. Get the raw data
8 data = serialComm(servostart,servostop,servostep,microstepping,readings);
9 % Convert the microstepping resolution from a character array to a

10 % number
11 msres = floor(str2num(microstepping) / 10);
12 % Spherical-Cartesian coordinate conversion
13 xyzPoints = sphCart(data,msres);
14 % Get the current date and time, format them as a string and use it to
15 % create a file name that contains the date and time the scan
16 % finished
17 scan_data = sprintf(’Scan_%s.mat’, datestr(now,’mm-dd-yyyy HH-MM’));
18 % Save the matrix containing the xyz-coordinates in a .mat file that
19 % uses the previously created file name
20 save(scan_data,’xyzPoints’);
21 % List the variables stored in the created file
22 disp(’Contents of the file:’)
23 whos(’-file’,scan_data)
24 % Display the point cloud



82 Appendix B. MATLAB Code

25 displayPtCloud(xyzPoints);

B.3 Functions

B.3.1 Serial Communication

1 % Function that stablishes and interrupts the serial communication
2 % with Arduino and returns the useful raw data. It calls three other
3 % functions utilized to transfer data to/from the uC, and calculate
4 % the scan duration
5 function data = serialComm(start,stop,step,micro,readings)
6 % Remove from memory any serial port object connceted to the port
7 % used by Arduino
8 delete(instrfind(’Port’,’COM12’))
9 % Create serial port object and specify the properties as follows:

10 % Baud Rate: 115200 bit/s
11 % Terminator Character: ’*’
12 % Input Buffer Size; 14MB
13 % Port Timeout: 2 hours
14 arduino_port = serial(’COM12’,’BaudRate’,115200);
15 arduino_port.Terminator = ’*’;
16 arduino_port.InputBufferSize = 14000000;
17 arduino_port.Timeout = 7200;
18 % Connect the serial port object to Arduino
19 fopen(arduino_port)
20 % Write the input data to Arduino
21 writeData(arduino_port,start,stop,step,micro,readings);
22 % Read data from Arduino
23 data = readData(arduino_port,start,stop,step);
24 % Disconnect from Arduino and remove the serial object
25 % from memory and workspace
26 fclose(arduino_port)
27 delete(arduino_port)
28 clear arduino_port
29 end

B.3.2 Write Data

1 % Function that sends the input parameters formatted as strings to Arduino.
2 % The MATLAB execution is paused to give time to the uC to read the input
3 % data
4 function writeData(arduino_port,start,stop,step,micro,readings)
5 pause(2);
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6 fprintf(arduino_port,’%s’,start);
7 pause(2);
8 fprintf(arduino_port,’%s’,stop);
9 pause(2);

10 fprintf(arduino_port,’%s’,step);
11 pause(2);
12 fprintf(arduino_port,’%s’,micro);
13 pause(2);
14 fprintf(arduino_port,’%s’,readings);
15 end

B.3.3 Read Data

1 % Function that reads data form Arduino and returns only the matrix
2 % containig data from the sesnors and actuators. Every call of fscanf
3 % reads at most the specified number of values until the terminator
4 % character is reached
5 function data = readData(arduino_port,start,stop,step)
6 residual = fscanf(arduino_port,’%c’,20000)
7 testscan = fscanf(arduino_port,’%f’,[3,1600]);
8 time = fscanf(arduino_port,’%i’,10);
9 scantime = getScanTime(time,start,stop,step)

10 data = fscanf(arduino_port,’%f’,[3,960000]);
11 end

B.3.4 Calculate Scan Time

1 % Function that calculates the scan duration (in moinutes) based on the
2 % time read from the uC follwoing input parameters: servo start angle,
3 % servostop angle and the angle by which the servo moves.
4 % The variables needed in the calculation are first converted to numbers
5 function scantime = getScanTime(time,servostart,servostop,servostep)
6 servostart = floor(str2num(servostart) / 10) / 100;
7 servostop = floor(str2num(servostop) / 10) / 100;
8 servostep = floor(str2num(servostep) / 10) / 100;
9 time = time / 2 * floor((servostop - servostart) / servostep + 1);

10 scantime = time / 60000;
11 end

B.3.5 Coordinate Conversion

1 % Function that extracts the spherical coordinates from the raw
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2 % data and outputs a matrix containing the Cartesian coordinates
3 % of the scanned points. Each coordinate represents one column:
4 % col1 : x; col2 : y; col3 : z.
5 function xyzPoints = sphCart(data,msresolution)
6 % Transpose the data matrix, so that each parameter is on one column
7 A = data.’;
8 % Extract spherical coordinates for the data matrix and convert the
9 % angles to radians

10 azimuth = A(:,1).*(2*pi/(200*msresolution));
11 inclination = A(:,2).*(pi/180);
12 radius = A(:,3);
13 % Use the formulas for coordinate conversion
14 x = radius .* sin(inclination) .* cos(azimuth);
15 y = radius .* sin(inclination) .* sin(azimuth);
16 z = radius .* cos(inclination);
17 % Concatenate the arrays into a matrix
18 xyzPoints = [-x y z];
19 end

B.3.6 Display Current Point Cloud

1 % Function which creates a point cloud object out of the matrix of
2 % Cartesian coordinates and plots it
3 function displayPtCloud(xyzPoints)
4 % Create a point cloud object with the specified xyz-coordinates
5 ptCloud = pointCloud(xyzPoints);
6 % Filter the point cloud
7 ptCloudFilt = pcdenoise(ptCloud);
8 % Create new figure window
9 figure(’Name’,’Point Cloud’,’NumberTitle’,’off’);

10 % Display the denoised point cloud without axes names
11 pcshow(ptCloudFilt);
12 axis off;
13 end

B.3.7 Load and Display a Specific Point Cloud

1 clc % Clear command window
2 clear % Clear workspace
3 close all % Delete all figures
4

5 % Load data from a prior scan (file name should be modified accordingly)
6 prevscan = ’Scan_01-01-2018 00-00.mat’;
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7 load(prevscan);
8 % Create a point cloud object with the specified xyz-coordinates
9 ptCloud = pointCloud(xyzPoints);

10 % Filter the point cloud
11 ptCloudFilt = pcdenoise(ptCloud);
12 % Create new figure window
13 figure(’Name’,prevscan,’NumberTitle’,’off’);
14 % Display the denoised point cloud without axes names
15 pcshow(ptCloudFilt);
16 axis off
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Obtained Point Clouds

The Figures C.1 and C.2 illustrate the resulting point clouds from Scan 4 and Scan
5 respectively.

Figure C.1: Scan 4 Point Cloud (Side A)
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Figure C.2: Scan 5 Point Cloud (Side A)
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