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Chapter 1

Introduction

The popularity and utilization of UAVs (Unmanned Aerial Vehicles) is at the
highest it has ever been. This has all been possible due to increased accessibility
to effective and economic sensors along with improved battery technology. Con-
sequently, these resulted in the development of UAVs that are affordable, can fly
for longer durations as well as carry larger weights as compared to their pre-
decessors. These circumstances opened the gates for the exploration of drone
applications in different sectors. As such, currently there are plethora of uni-
versities, as well as private firms, who focus their research on UAV technology
and its applications. Although the research directions are numerous, one of
the examples is in drone navigation, which treats problems like path finding
or obstacle avoidance in unknown environments. Another area of research is
the development of state-of-the-art controllers that can provide better stabiliza-
tion in the presence of disturbances and uncertainties. With so much attention,
there are bound to be areas of application in which UAVs come into prospect.
These include safety (through monitoring of airspace), environmental protection
(using pollution measurements), aerial inspection of infrastructure etc. [1].

UAVs are of many types but one of its subcategories, the quadrotor1, is the
subject of this project. Compared to other UAVs, the quadrotors exhibit a simple
structure with capabilities for diverse flight characteristics, like hovering and the
VTOL (Vertical Take Off and Landing), making it suitable for flying in almost
every kind of environment such as indoors or places with tight spaces [2]. How-
ever, the quadrotor system is highly nonlinear, it exhibits 6 degrees of freedom
(DoFs), but only 4 controllable inputs, making it an underactuated system [3].
Furthermore, in contrast to their terrestrial counterparts, drones have very little
friction in air and need to generate their own damping forces in order to stop
their movement and stabilize [4]. These factors, along with many others, make
the stabilization of a quadrotor a fascinating control problem. Subsequently, this
report deals with the modelling and control of a quadrotor in consideration to

1Henceforth, the terms "UAV", "quadrotor", "quadcopter" and "drone" will be utilized inter-
changeably.

1



2 Chapter 1. Introduction

hovering and position control.
To approach the problem systematically, the work is divided into five main

sections. First, modelling, as the name suggests this section treats the objective
of dynamical modelling of the quadrotor using the Newton-Euler method. The
same section also gives an insight on the required mechanisms such as lineariza-
tion and thrust mixing. Second, the sensors and signal processing section shifts
its attention towards the sensor unit with details on the utilized sensory devices
as well the necessary filters which are implemented in tandem with them. Third,
the controller design and implantation, this section is aimed towards the devel-
opment of the quadrotor controllers, which in our case constitute the PID and
the LQR. For both the controllers, the results are shown from simulation for each
of the controlled outputs. Lastly, the testing section discusses the test setup and
presents the results of the implemented control strategy.



Chapter 2

Literature Review and System Descrip-
tion

2.1 State of the Art

In order to gain insight into the problem of stabilizing a quadcopter, carrying out
a short review of the specialized literature was found appropriate. This section
thus lists the prevailing approaches associated with the three following facets of
drone control: modeling, control strategy and sensing.

Modeling

By far the most common way of describing the orientation of a quadcopter is
through rotation matrices constructed based on one of the Euler angle conven-
tions [1, 3, 5]. An alternative to this approach is represented by the less-intuitive
quaternion formalism [6, 7, 8, 9]. When it comes to the dynamic equations,
a very ubiquitous modeling method consists of the Newton-Euler technique [3,
10]. An equivalent way of arriving to the same relations is via the Euler-Lagrange
method [11, 12]. Apart from these first principle procedures, system identifica-
tion has been employed in works such as [13, 14, 15] and [16], the latter two
choosing the utilization of artificial neural networks (ANNs) in this endeavour.

Control Strategy

Unsurprisingly, a very much preferred approach in the literature is to use the
classical PID controller, which is extremely popular in the field of automatic
industrial processes [14]. There is evidence of the use of a plethora of methods
for identifying suitable PID quadrotor controller gains. Trial and error is utilized
in [17, 18], Genetic Algorithm is implemented in [19, 20], while optimal PID
gains are found in [14] via Particle Swarm Optimization (PSO).

Another popular choice is the well-known optimal control algorithm known
as LQR. Many authors explore its performance, with some examples being [21,

3



4 Chapter 2. Literature Review and System Description

22, 23]. A more complex time-varying version of LQR is mentioned in [10, 24].
In an attempt to circumvent the inherent disadvantages of linear control,

nonlinear alternatives have been studied and implemented. In [25] Approxi-
mate Dynamic Programming (ADP) and Model-Predictive Control (MPC) are
implemented on a real quadrotor. MPC is also used together with a nonlinear
H∞ controller in [26]. In addition, feedback linearization control is discussed
in [27, 11], while the utilization of backstepping and sliding mode control is
pursued in both [28] and [11].

Finally, as with modelling, neural networks became established tools within
the control field and recently found their way into drone stabilization. The work
conducted in [16, 29] is based on a direct inverse control using artificial neural
network (DIC-ANN) scheme.

Sensors and State Estimation

The literature provides different approaches towards sensing and data acquisi-
tion. With GPS not being reliable indoors [30], for drone position and linear
velocity estimation, motion capture (MOCAP) systems, (Vicon, in particular) are
a favoured sensing solution, mainly for their exceptional accuracy [30, 31, 32].
Small cameras mounted on the quadrotor itself are used in [28] for position con-
trol and the author uses a sonar for altitude measuremnts. The authors of [33]
suggest the use of RGBD cameras, Kinect or laser range finders for the task of
measuring relative position in indoor environments.

Attitude and angular velocity information is usually extracted via an onboard
Inertial Measurement Unit (IMU), encompassing a gyroscope, an accelerometer
and possibly a magnetometer [28, 23, 32]. Additionally, state estimation through
some form of complementary filter [24, 33, 34], Kalman Filter (KF) [35, 36] or
Extended Kalman Filter (EKF) [8, 24] is an extensive and prevalent topic dis-
cussed in many papers and reports. An especially circumstantial description of
measurement and state estimation in provided in [10], in which MOCAP, opti-
cal flow, IMU, laser ranging and ultra wide band (UWB) positioning are fused
through an EKF, for all possible combinations.

2.2 System Overview

With a preliminary knowledge of the previous works documented in the quadro-
tor control literature, it was possible to define the methods to be utilized in the
present project. As this represents the authors’ first contact to the world of UAVs,
the most common and well-documented modeling and control paths have been
pursued. That is, rotation matrices and the Newton-Euler formalism were cho-
sen as means of modeling, while PID and LQR were selected as the controllers
of attitude, altitude and position. In the context of sensing, the simpler comple-
mentary filter option is picked for obtaining reliable attitude estimations from
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the IMU, while three-dimensional position sensory information is extracted via
three Time-of-Flight (ToF) laser-ranging modules1.

A block diagram illustrating the elements of the system and their correspond-
ing positions within a very generic control loop is shown in Figure 2.1. The di-
agram applies almost directly to the structure used in PID control, while minor
modifications can be made to accommodate for LQR-control representation.

r Discrete

IMU

Quadrotor Continuous Plant

ESC⇐⇒Controller

Accelerometer

Gyroscope

MCU

3× 1D LiDAR

Complementary
Filter

4× BLDC Motor
ue

PW1,...4
Ω1,...4v1,...4

y

φ̂, θ̂

ψ

x, y, z

φ, θ

φ, θ

Distances

Linear
Accelerations

Angular
Rates

Figure 2.1: Simplified Block Diagram of the Overall Control System

Many more details are provided in the following chapters, though examining
this superficial description of the system is useful for a general understanding
of the procedure employed here for controlling a quadrotor, on both a hardware
and a software level. A microcontroller (MCU) lies at the core of the control sys-
tem. It is programmed to run the code of the discrete controller, who computes
a certain control signal u, based on the error e between a user-selected reference
r and the measured outputs of interest y of the physical system. To create the
desired effect in the real world, four electrical signals of specific pulse widths
(PWi) must be sent to the Electronic Speed Control (ESC), which in turn excites
the winding of each brushless DC (BLDC) motor with a voltage vi. The elec-
tric motors convert the received electrical energy to mechanical energy, which
manifests itself in the form of thrusts and torques acting on the UAV’s airframe,
thus causing changes in the system’s state. Through sensory devices, several
variables are measured and fed back to the MCU for a new computation of the
control. As mentioned before, the sensors are three 1D LiDARs that acquire the
realtive position (x, , y, z) of the drone within a specific indoor testing environ-
ment, and an IMU supplying attitude measurements. This unit encompasses an
accelerometer, able to perceive changes in the linear velocity of the quadcopter,
and a gyroscope, which measures the angular speeds expressed in the body
frame. Through calculations, it is possible to derive the actual inclination angles
of the quadrotor, i.e.: roll (φ), pitch (θ) and yaw (ψ). Each measurement carries
certain drawbacks, mitigated through the complementary filter (CF), which is

1alternatively referred to "1D LiDAR" in this report



6 Chapter 2. Literature Review and System Description

able to produce reliable angular estimations. As it will be discussed in Chap-
ter 4, we used the CF for getting roll and pitch, while yaw is simply computed
based on gyroscopic data.

Materials

In terms of the specific parts utilized, we opted for Teensy 3.6 [37] as the con-
troller implementation platform, and chose Aikon AK32 35A V2 4in1 BlHeli32
[38] as the ESC. The BLDC motors are EMAX RS2205 2600KV [39], the ToF mod-
ules are from STMicroelectronics, model VL53L0X [40], while the IMU number
is GY-87 MPU6050 HMC5883L BMP180 [41], including on a single chip a 3-axis
accelerometer, a 3-axis gyroscope, a 3-axis magnetometer and a barometric pres-
sure sensor, thus measuring 10 DoFs. Apart from these, a battery was required
to power the electronics, and the preferred choice was 3S Gens Ace EC5 Bashing
Series, rated 5000mAh and 50C [42].



Chapter 3

Modeling

3.1 Preambular Notation

It was considered convenient to follow the lead of [10] and dedicate a short
initial subsection to the notations that will be used throughout the modeling
part. There are three discrete reference systems utilized for the localization of
the quadrotor in space. The first one is the inertial global reference frame (G),
considered fiducial in time, i.e., attached to the earth (assumed stationary and
flat in this report). This is followed by a second inertial frame (I), whose origin
coincides with the center of mass (COM) of the aircraft, and has its unit vectors
parallel to those of the global frame. The third and last frame consists of the
non-inertial body frame (B), firmly attached to the drone and therefore rotating
concomitantly with it. The latter coordinate system has its origin in the center
of mass as well and will start by being superimposed to the inertial frame. This
is illustrated in Figure 3.1.

ŷI

x̂I

ẑI

ŷG

x̂G

ẑG

p

ẑB

x̂B

ŷB

cross-configuration

plus-configuration

Ω1
Ω4

F4
ŷB

x̂B

ẑB

F1

F3

Ω3

Ω2

F2

COM

Figure 3.1: Left: The three reference systems considered; Right: The quadrotor within the body
reference frame
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8 Chapter 3. Modeling

Henceforth, we may refer to the aforementioned frames as "global frame" or
"G-frame", "inertial frame" or "I-frame" and "body frame" or "B-frame", respec-
tively. Any vector related to the dynamic behaviour of the UAV can be expressed
in each one of these frames of reference using the corresponding basis vectors.
Which basis vectors are used will be indicated, when appropriate, by a right
subscript associated with the correct frame, as it will be shortly shown.

Let the vector p mark the position of the UAV’s center of mass with respect
to the hypothetically-assigned origin of the G-frame. Additionally, let v and
ω define the traslational and angular velocities of the body frame relative to
the global (or inertial) frame. Finally, let η be the vector containing the three
Euler angles, which are defined intrinsically. Equation 3.1 shows the notation
for the three components of each of the preceding vectors, when each vector
is expressed in the frame of reference found most convenient for writing the
dynamic equations.

pG =

x
y
z

 vB =

u
v
w

 ωB =

p
q
r

 η =

φ

θ

ψ

 (3.1)

Figure 3.1 also shows two possible configurations for defining the body frame
basis vectors and therefore the axes of rotations. The "cross configuration" de-
fines the xB-axis in such a way that two motors (1 and 2 or 3 and 4) are employed
in order to create a rotation around this axis. Another combination of motors is
thus used to rotate around the yB-axis. In the alternative "plus-configuration",
the xB-axis lies along a line linking the COM to one of the motors (1, in the
figure). This topology allows only one motor to be used for rotating around the
axis. The same can be stated about the yB-axis [10]. Moreover, further compli-
cations in calculating torques emerge if the positioning of the rotors does not
describe the vertices of a square. For these reasons, the former configuration
was selected.

3.2 Euler Angles

The convention adopted in this report is the one of the Tait-Bryan (alternatively
named Cardano/Cardan [28, 43]) angles, which find a widespread use in aero-
nautical applications. It is particularly within this convention that the angles
of roll, pitch and yaw are explicitly defined [44]. For convenience, the formu-
lations "Euler angles" and "Tait-Bryan angles" will be utilized interchangeably
throughout this report.

Citing from [44], "Euler proved that: Any two independent orthogonal co-
ordinate frames with a common origin can be related by a sequence of three
rotations about the local coordinate axes, where no two successive rotations may
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be about the same axis. In general, there are 12 different independent combina-
tions of triple rotation about local axes". Equations 3.2-3.4 show the three chosen
rotation matrices for describing the UAV attitude in terms of roll, pitch and yaw,
while Figures 3.2-3.4 illustrate the rotations and the changes of bases that occur.
A transformation resulting from multiplying a given vector with one of the ma-
trices creates either a clockwise rotation of the vector about the respective axis,
or a counterclockwise rotation of the coordinate system. The two interpretations
are equivalent [45]. Adopting the following shorthand notations: cα = cos α and
sα = sin α, we have:

Rz(ψ) =

 cψ sψ 0
−sψ cψ 0

0 0 1


(3.2)

Ry(θ) =

cθ 0 −sθ

0 1 0
sθ 0 cθ


(3.3)

Rx(φ) =

1 0 0
0 cφ sφ

0 −sφ cφ


(3.4)

ŷI

x̂I

ẑ′, ẑI

x̂′

ŷ′

ψ

ψ

Figure 3.2: Yaw

ẑ′

x̂′′

ŷ′′, ŷ′

ẑ′′

θ

θ

x̂′

Figure 3.3: Pitch

x̂B, x̂′′

ŷ′′

ẑ′′
ŷBẑB

φ

φ

Figure 3.4: Roll

Any rotation in three dimensions from the inertial frame to the rotational one
can be described by a composition of rotations around the three moving axes [44,
43]. Utilizing the intrinsic convention zyx, in which the rotations are performed
with respect to the body-fixed coordinate system (as depicted in Figures 3.2-3.4),
the overall rotation matrix converting between the two frames is computed as
shown in Eqution 3.5. (We chose the same matrices and order of rotation as [10,
44, 46].)

B
IR = Rx(φ)Ry(θ)Rz(ψ) =

 cψcθ cθsψ −sθ

cψsφsθ − cφsψ cφcψ + sφsψsθ cθsφ

sφsψ + cφcψsθ cφsψsθ − cψsφ cφcθ

 (3.5)

Since rotation matrices are orthogonal [45, 44], the inverse mapping between
reference frames is possible using the property in Equation 3.6.

I
BR = B

IR
−1

= B
IR

T
(3.6)

With the rotation matrix now defined, we can already write a relation leading
to three equations that will be part of the nonlinear quadcopter model. Based
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on the definitions from Equation 3.1 and the notations in Appendix A, we have
Equation 3.7, linking the linear speeds of the body frame with respect to the
inertial frame, expressed in the basis of the inertial frame, and the same linear
speeds, only this time written using the vector basis of the body frame:

ṗG = vG = I
BRvB =

cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ

cθsψ cφcψ + sφsψsθ cφsψsθ − cψsφ

−sθ cθsφ cφcθ

u
v
w

 (3.7)

which, when performing the multiplications, becomes Equation 3.8:ẋ
ẏ
ż

 =

w(sφsψ + cφcψsθ)− v(cφsψ − cψsφsθ) + ucψcθ

v(cφcψ + sφsψsθ)− w(cψsφ − cφsψsθ) + ucθsψ

wcφcθ − usθ + vcθsφ

 (3.8)

3.3 Rate of Change of Euler Angles

Due to the nature of the intrinsic Euler angles, intermediary Eulerian local ref-
erence frames are necessary for describing the sequence of rotations. When the
derivatives of these angular displacements are computed, the result does not
label the angular velocity of the body frame with respect to the inertial frame.
However, this angular velocity can be expressed as a function of the rate of
change of the Euler angles (also known as Euler frequencies) [44], as shown in
Equation 3.9 [10, 46].

ωB =

p
q
r

 = I3


dφ
dt

0

0

+Rx(φ)


0
dθ
dt

0

+Rx(φ)Ry(θ)


0

0
dψ
dt

 =

1 0 sθ

0 cφ cθsφ

0 −sφ cφcθ

φ̇

θ̇

ψ̇


(3.9)

In shorthand notation, we have the equivalent Equation 3.10:

ωB = W(η)η̇ (3.10)

where W(η) denotes the matrix responsible for the mapping. The reciprocal
of Equation 3.9 is valid as long as det(W(η)) 6= 0. It is clear that this condition
is fulfilled when θ /∈

{
(2k + 1)π

2 , k ∈ Z
}

, as the matrix W(η) becomes singular
at steep pitch angles. This phenomenon is known as gimbal lock and occurs in
practice predominantly during aggressive flight [10]. If we assume W(η) to be
non-singular, we can obtain the Euler frequencies in terms of ωB, as shown by
Equation 3.11 (where tα = tan α):
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η̇ =

φ̇

θ̇

ψ̇

 = W−1(η)ωB =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ


p

q
r

 (3.11)

The vector ωB denotes the angular velocity of frame B relative to frame I ,
as expressed using the body frame basis vectors. We may also choose to express
it in the inertial frame by premultiplying with IBR (Equation 3.12). We also note
that, since frames G and I have parallel basis vectors, the representation of any
vector is the same in both coordinate systems.

ωG =ωI =
I
BRωB (3.12)

3.4 Rotor Dynamics

The most relevant dynamics affecting the flight of the quadrotor are the total
thrust generated by the four motors and the torques about the three axis [33,
27]. The lift forces are depicted in Figure 3.1 and also in the right-hand side of
Figure 3.5, from a different vantage point. The free body diagram in Figure 3.5
illustrates the reaction torques about the zB-axis arising due to the rotation of the
propellers (see the left half), while also elucidating the direction of the moments
corresponding to the individual thrust forces causing the drone to either roll
or pitch (see the right half). It should be noted that the aim of the present
section is to provide insight into the crucial dynamics and hence the forces and
torques having less significant effects will be neglected. The model can always
be extended if necessary by fully or partially considering these effects.

Ω1
Ω4

M4
ŷB

x̂B

ẑB Ω3

Ω2

M2

M1

M3 ŷB

x̂B

L2

F3

F4

τ2

τ3

τ4

τ1

F1
Ω4

Ω3Ω2

α

L1 L4

F2

Ω1

L3

Figure 3.5: Simplified UAV Free Body Diagram

The amount of thrust generated by a single motor is given by the lumped
model in Equation 3.13 [33]:

Fi = kiΩi
2 (3.13)
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where ki is a constant encompassing the aerodynamics of the rotor. The total
thrust TB available for keeping the drone hovering (assuming identical motors
for which ki = kT, ∀i ∈ {1, . . . 4}) is simply the sum of the individual contribu-
tions (Equation 3.14), all having the same orientation: parallel to ẑB.

T =
4

∑
i=1

Fi = kT

4

∑
i=1

Ωi
2 TB = TẑB =

0
0
T

 (3.14)

As one propeller spins, it exerts a torque on the surrounding air. Based on
Newton’s third taw of motion, a reaction appears, creating a torque acting on
the airframe in the opposite fashion. This torque tends to turn the body in the
reverse direction as compared to the one of the rotor’s tangential velocity [33].
If we follow the physical convention of [47, 48], all four moments will lie along
zB, so the UAV will turn about this axis. Each torque can be modelled as in
Equation 3.15:

Mi = biΩi
2 + JiΩ̇i ≈ biΩi

2 (3.15)

where bi is another aerodynamic constant and Ji is the moment of inertia of
a given rotor. Usually Ω̇i is small and thus the second term is omitted [3, 27].
The total torque τz about the zB-axis corresponds to the algebraic sum of all the
individual motor torques. Again, assuming the rotors are identical, meaning
bi = bτ, ∀i ∈ {1, . . . 4}, we have the relation in Equation 3.16:

τz = bτ(−Ω1
2 + Ω2

2 −Ω3
2 + Ω4

2) = bτ

4

∑
i=1

(−1)iΩi
2 (3.16)

The torques about the yB-axis and the xB-axis in the cross-configuration
topology are obtained from the cross products of upward forces Fi - expressed
in the body frame - and the corresponding distances Li with respect to the COM
[3, 10, 33]. Assuming ‖Li‖ = L, ∀i ∈ {1, . . . 4}, it becomes a matter of simple
geometry to compute the required torques. (The directions of the torque vec-
tors are again drawn in accordance to the classical convention in [47, 48].) The
resulting formulae are the ones in Equations 3.17-3.18:

τy = L sin
α

2
(−F1 + F2 + F3 − F4) = kT L sin

α

2
(−Ω1

2 + Ω2
2 + Ω3

2 −Ω4
2) (3.17)

τx = L cos
α

2
(−F1 − F2 + F3 + F4) = kT L cos

α

2
(−Ω1

2 −Ω2
2 + Ω3

2 + Ω4
2) (3.18)

The total torque in the body frame τB gathers the preceding results in a
vector, as indicated in Equation 3.19 [10]:
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τB =

τx
τy
τz

 (3.19)

Figure 3.6 illustrates how rotational motion, as described using positive Euler
angles, can be achieved by varying the motors’ angular speeds in an adequate
fashion. It is assumed in each case that the vertical component of the total thrust
produced by the BLDC motors (in the G-frame) is sufficient to balance Earth’s
gravitational pull. If motors 1 and 2 rotate at a slower rate as compared to the
other two, the drone will roll to the left, as the sum of F3 and F4 is bigger than
the one of F1 and F2. In the case when motors 2 and 3 are the ones rotating faster,
the quadrotor will pitch forward, because this time the greater sum is formed
by F2 and F3. Finally, whenever the speed of motors 2 and 4 is higher than the
angular velocity of the 1-3 motor pair, the UAV yaws counterclockwise, since the
torque formed by M2 and M4 overcomes the total moment acting in the opposite
direction. In this case, F2 + F4 is obviously larger than F1 + F3.

F4

F3

F1

F2

Ω1 Ω4

Ω3Ω2

F2
F3

F4

F4

F1

F3

F2
ŷB

x̂B

ŷB

x̂B

ẑB

Ω1 Ω4

Ω3
Ω2

F1Ω1 Ω4

Ω3
Ω2

ŷB

x̂B

ẑB

Figure 3.6: Illustration of the Relationship Between the Motor Angular Speeds, Thrust Forces
and the Rotational Motion of the UAV. Top to Bottom: Roll Rotation, Pitch Rotation, Yaw Rotation
(With Positive Angles)
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3.5 The Newton-Euler Method

In the specialized literature, one ubiquitous modelling approach to describe the
movement of the quadrotor is represented by the rigid-body Newton-Euler equa-
tions from classical mechanics [3, 27]. In the body frame, these relations are the
ones shown in Equations 3.20-3.21.

mv̇B +ωB ×mvB = FB (3.20)

IBω̇B +ωB × (IBωB) = τB (3.21)

where FB and τB are the net force and net torque, respectively, acting upon
the airframe and expressed in terms of the body frame basis vectors. Additional
details on vector differentiation in the context of rotating reference frames are
provided by Appendix A.

Translation Equation

The acceleration of the quadrotor is a function of the total thrust TB produced by
its four propellers and the gravitational force, both acting upon the UAV’s COM.
Thus, FB is equal to the sum of these two forces. Since the gravitational force
impedes the upward vertical movement of the quadrotor by acting towards the
center of the Earth, it is defined as a negative force parallel to ẑG and denoted as
Fg, as shown in Equation 3.22:

Fg =

 0
0
−mg

 (3.22)

In order to translate its effect to the body frame where we write Newton’s
second law of motion, BIR is premultiplied with it before the summation. The
resulting translation equation is expressed in Equation 3.23.

FB = TB + BIRFg = mv̇B +ωB ×mvB (3.23)

Performing the necessary substitutions using Equations 3.1, 3.5, 3.14, 3.22
and dividing by m on both sides yield Equation 3.24:

 0
0
T
m

−
 cψcθ cθsψ −sθ

cψsφsθ − cφsψ cφcψ + sφsψsθ cθsφ

sφsψ + cφcψsθ cφsψsθ − cψsφ cφcθ

0
0
g

 =

 u̇
v̇
ẇ

+
 0 −r q

r 0 −p
−q p 0

u
v
w


(3.24)

which can be further simplified by carrying out the matrix multiplications
and additions to get Equation 3.25:
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 gsθ

−gcθsφ

−gcφcθ +
T
m

 =

 u̇ + qw− rv
v̇ + ru− pw
ẇ + pv− qu

 (3.25)

Rotation Equation

In the simplest possible model we aim for, the only torques acting on the air-
frame are the entries of the τB vector, produced by the motors. We can now
evaluate Equation 3.21 as follows (see Equation 3.26) if we use Equation 3.19,
the relevant parts of Equations 3.1, as well as Equation B.3 defining the inertia
tensor IB:

τx
τy
τz

 =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 ṗ
q̇
ṙ

+

 0 −r q
r 0 −p
−q p 0

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

p
q
r

 (3.26)

If we assume that the UAV is symmetric with respect to the axes belonging
to the body frame, the inertia tensor will have the form given in Equation 3.27.
Further information about this parameter is available in Appendix B.

IB =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (3.27)

We obtain Equation 3.28 by updating the inertia tensor in Equation 3.26.

τx
τy
τz

 =

Ixx 0 0
0 Iyy 0
0 0 Izz

 ṗ
q̇
ṙ

+

 0 −r q
r 0 −p
−q p 0

Ixx 0 0
0 Iyy 0
0 0 Izz

p
q
r

 (3.28)

and performing the matrix multiplications and addition yields the simpler
Equation 3.29. τx

τy
τz

 =

Ixx ṗ− (Iyy − Izz)qr
Iyyq̇− (Izz − Ixx)pr
Izzṙ− (Ixx − Iyy)pq

 (3.29)

3.6 Aerodynamic Effects

While including the aerodynamic effects on the drone in the model will certainly
improve the performance of the quadrotor, the simpler demands of this project,
i.e.: stabilization of the quadrotor at hover condition, gives us the leeway of
excluding non-consequential effects. Moreover, this section discusses those ex-
cluded aerodynamics as well as the reasoning for their exclusion.
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Ground Effect

When the quadrotor operates near a level ground surface, about the height equal
to half the diameter of the rotor, there appears a thrust augmentation which
pushes the quadrotor away from the ground, this is related to the reduced air-
flow velocity [28, 49]. Although this could be beneficial in terms of fuel con-
servation as it leads to an increased rotor efficiency, it can also influence the
quadrotor dynamics and make the control harder [49, 50]. One of the proposed
mathematical descriptions of this effect is presented in Equation 3.30, such that
T is the thrust produced by the propeller during ground effect and T∞ is the
thrust while being outside this effect’s influence, at the same power. Also, R is
the radius of the rotor and z is the altitude of the quadrotor.

T
T∞

=
1

1−
(

R
4z

)2 (3.30)

Now, considering the situation where the drone is above the half diameter
threshold, which leads to the ratio z

R = 2, then the predicted ratio between T and
T∞ is merely 1.016. Consequently, this gives basis for the negligence of ground
effect above one rotor diameter [51]. On assessment of desired hovering altitude
for our quadrotor (which is above one rotor diameter), there is no need for the
inclusion of ground effect in the modelling procedure. However, it should be
noted that the ground effect would still influence the take-off and landing, but
its effects are believed to be compensated by the developed controller during
those brief periods.

Gyroscopic Effect

Next, the considerations are in concern with the gyroscopic effect. According to
the literature in [50] and [52], the gyroscopic effect could be neglected if the iner-
tia of the propeller group is small as compared to the main quadrotor body (this
could also be interpreted as mass of propellers being significantly less than the
whole body). As such, the mass of the propeller group is 14g, which contributes
insignificantly to the weight of the whole body (777g), thus giving the grounds
to ignore the said effect. Nonetheless, the unmodelled gyroscopic effect will be
treated as a disturbance and thus will get rejected by the controller [50].

Complexities of Rotor Dynamics

The rotor dynamics play a crucial role in the modelling of the quadrotor but in
consideration to the assumed fast transients for our motors, we utilized the static
relation for the lift force Fi and the reaction moment Mi given in Equation 3.14
and 3.15.
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Moreover, this simplistic assumption is effectual only in a limited prospect.
In reality, the expressions for the lift force and the torque are complex functions
of environmental conditions, such as air density, angle of attack (AOA) along
with other rotor characteristics. During the translational movement, there is a
thrust variation due to two related effects: translational lift and the change in
angle of attack (AOA). This governs the dynamic relation for the total thrust,
which could be derived using the combination of blade element theory and the
momentum theory, as shown in [51]. But in the case of hovering (i.e.: static
conditions), it is feasible to obtain the familiar T ∝ Ω2 relation from the complex
expression used for translational movement. Based on this understanding, it is
fair to say that rotor dynamics are much more influential when translational mo-
tion and complex manoeuvres are at play. Although there will be some limited
involvement of simplistic translational movement, any other complex manoeu-
vres are out of the scope of this project. On top of that, in the simple case of
hovering (according to [50]), it is a reasonable assumption to ignore the aerody-
namics of rotorcraft vehicles where the operation is at slow velocity. Therefore,
in the end, the simplistic static model for lift force and reaction moment was
utilized for modelling.

3.7 Nonlinear Model

The equations established, in the preceding sections, for describing the dynamics
of the quadrotor can be transformed into the conventional state variable form
and are illustrated below (Equation 3.31).

ẋ = f(x, u) =



ṗ = 1
Ixx
[τx + (Iyy − Izz)qr]

q̇ = 1
Iyy
[τy + (Izz − Ixx)pr]

ṙ = 1
Izz
[τz + (Ixx − Iyy)pq]

u̇ = rv− qw + gsθ

v̇ = pw− ru− gcθsφ

ẇ = qu− pv− gcφcθ +
T
m

φ̇ = p + qsφtθ + rcφtθ

θ̇ = qcφ − rsφ

ψ̇ = r
(

cφ

cθ

)
+ q
(

sφ

cθ

)
ẋ = w(sφsψ + cφcψsθ)− v(cφsψ − cψsφsθ) + ucψcθ

ẏ = v(cφcψ + sφsψsθ)− w(cψsφ − cφsψsθ) + ucθsψ

ż = wcφcθ − usθ + vcθsφ

(3.31)

where the state vector is given in Equation 3.32:
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x =
[
x y z u v w φ θ ψ p q r

]T ∈ R12 (3.32)

and the input vector is the one in Equation 3.33:

u =
[
T τx τy τz

]T ∈ R4 (3.33)

3.8 Linear Model

The non-linearities present in the conglomeration of equations defining the model
of the quadcopter present themselves as an impediment to the system analysis
procedure. With a myriad of tools available for control system design of linear
models, the natural succession to the process would be linearization. It begins
with the selection of an equilibrium point around which a linear approximation
of the system is identified. Since the quadrotor system is to be developed for
the hovering condition, the operating point which constitutes the inputs and the
states required to maintain the system in equilibrium serve as the point of lin-
earization. The case of hovering is such that the quadrotor is oriented parallel to
the ground with neither angular nor translational movement transpiring. Con-
sequently, the angles, velocities and the input torque vector τB are all equal to
zero. Equations 3.34 and 3.35 depict the input and state vector for the hovering
condition, also dubbed the equilibrium point. In relation to the said equations,
the force keeping the quadrotor aloft is the vertical thrust T, which has to match
the gravitational force of the body, and the variables x̄, ȳ, and z̄ denote all the
real translational positions possible for the quadrotor [27].

x̄ =
[
x̄ ȳ z̄ 0 0 0 0 0 0 0 0 0

]T ∈ R12 (3.34)

ū =
[
mg 0 0 0

]T ∈ R4 (3.35)

In addition, the linearization is pursued with regard to an assumption that
the validity of the model is preserved for small deviations from the equilibrium
point. This leads to a simplification of the non-linear model using small angle
approximation (i.e.: sin α = α, cos α = 1), with the result being represented by
the simplified state of equations shown in Equation 3.36.
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ẋ = f(x, u) =



ṗ = 1
Ixx
[τx + (Iyy − Izz)qr]

q̇ = 1
Iyy
[τy + (Izz − Ixx)pr]

ṙ = 1
Izz
[τz + (Ixx − Iyy)pq]

u̇ = rv− qw + gθ

v̇ = pw− ru− gφ

ẇ = qu− pv− g + T
m

φ̇ = p + qφθ + rθ

θ̇ = q− rφ

ψ̇ = r + qφ

ẋ = w(φψ + φ)− v(ψ− φφθ) + u
ẏ = v(1 + φψθ)− w(φ− ψθ) + uψ

ż = w− uθ + vφ

(3.36)

Finally performing the first order Taylor expansion on Equation 3.36 at the
equilibrium point leads to the linear model of the quadrotor as presented in
Equation 3.37, in which the ∆ notation is dropped for the right-most side.

ẋ ≈ f(x̄, ū) +
∂f(x, u)

∂x

∣∣∣∣
x̄, ū
· ∆x +

∂f(x, u)
∂u

∣∣∣∣
x̄, ū
· ∆u⇒ ẋ =



ṗ = τx
Ixx

q̇ =
τy
Iyy

ṙ = τz
Izz

u̇ = gθ

v̇ = −gφ

ẇ = T
m

φ̇ = p
θ̇ = q
ψ̇ = r
ẋ = u
ẏ = v
ż = w

(3.37)

An alternative to the above set of linear equations is illustrated in Equation
3.38, which will be utilized in the design of the state space controller LQR.
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ẋ =



φ̈ = τx
Ixx

θ̈ =
τy
Iyy

ψ̈ = τz
Izz

ẍ = gθ

ÿ = −gφ

z̈ = T
m

(3.38)

3.9 Thrust Mixer

The system inputs are the thrust and the three torques corresponding to the
rotations around the body-frame axes and they depend on the angular speeds
of the four motors, as shown in Section 3.4. Equations3.39, where we denote the
constant thrust mixing matrix by P, elucidates the underlying correlations:

u =


T
τx
τy
τz

 =


kT kT kT kT

−kT L cos α
2 −kT L cos α

2 kT L cos α
2 kT L cos α

2

−kT L sin α
2 kT L sin α

2 kT L sin α
2 −kT L sin α

2

−bτ bτ −bτ bτ


︸ ︷︷ ︸

P


Ω2

1
Ω2

2
Ω2

3
Ω2

4

 (3.39)

3.10 Parameter Estimation

Mass and Moment of Inertia

The Newton-Euler equations presented in Section 3.5 have been utilized to build
a Simulink model of the quadcopter. In order to successfully monitor the be-
haviour of the open-loop system under different inputs and eventually devise
adequate controllers for position and attitude, the mass m and inertia IB of the
UAV had to be estimated. In the case of the former parameter, it was simply
a digital scale that was required. For the elements of the inertia tensor how-
ever, calculations had to be performed assuming some prior approximations.
Regarding the UAV as a cuboid-shaped solid body with a constant density func-
tion ρ(x, y, z) = ρ, and measurable dimensions xb, yb and zb, the corresponding
body-frame inertia tensor is, in view of the contents of Appendix B, the one in
Equation 3.40.

IB =
m
12

y2
b + z2

b 0 0
0 x2

b + z2
b 0

0 0 x2
b + y2

b

 (3.40)
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Different and arguably more accurate geometric approximations are carried
out in [53] and [54]. In the first case, the quadrotor is modelled as a sphere with
a known radius and the motors are reduced to dimensionless mass points, while
the second paper simplifies the airframe to two cylinders forming a cross struc-
ture, while also considering the masses and the moments of inertia of the motors
and propellers. Even more exact methods for finding the values in the inertia
tensor have been utilized in other works, such as direct extraction from a CAD
model of the quadrotor [24, 34], or experimental estimation using the pendulum
method [55]. However, building a detailed 3D model or performing complex
experiments and geometric approximations to obtain very accurate estimations
was deemed rather too time consuming. The approximation errors resulting
from the cuboid method are expected to be compensated by the controller.

Thrust Mixer and Motor Control Constants

Additional constants were necessary to establish the entries of the thrust mixing
matrix P appearing in Equation 3.39, as well as to link the ESC’s signal pulse
widths to the angular speeds. The parameters L and α, necessary for calculating
the moment arms for τx and τy, were effortlessly measured with a scale and
a protractor. On the other hand, kT and bτ, the constants describing the aero-
dynamic characteristics of the rotors, had to be identified experimentally. One
motor, to which the corresponding propeller was attached, was spun by supply-
ing a range of voltages in an attempt to cover as much as possible of its operating
range.

The experiments were conducted utilizing the Series 1585 Dynamometer and
Thrust Stand [56]. Under the reasonable assumption that all the BLDC motors
are identical, only one of them was connected to the testing platform and was
used for estimation purposes. The platform is equipped with sensors capable
of measuring, among other parameters, the width of the applied PWM signal,
the angular speed of the motor, the generated thrust and the reaction torque.
The conducted experiment consisted of running a preexisting script - through
the testbench’s dedicated software package - that would steadily increase and
then decrease the pulse width of the PWM signal sent to the ESC, between some
user-selected boundaries. Employing the standard PWM protocol, the limits
were manually set to 1000µs (the arming pulse width) and 1800µs. It is also
important to specify that the battery was fully charged (a voltage of 12.6V was
measured at its terminals) at the juncture when data was being collected.

The following three indispensable relation needed to be discovered via mea-
surements: Fi as a function of Ω2

i , τz as a function of Ω2
i and pulse width as a

function of Ωi, which was done by curve fitting. Upon a preliminary look at
the data, for the ascending pulse widths, it was found that, if all motors were
to produce the maximum thrust (corresponding to a pulse width of 1800µs), the
drone would accelerate upwards at a rate of 13m/s2, assuming zero Euler an-
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gles. This was found unnecessarily high, and for safety reasons it was decided to
limit the maximum acceleration to the more manageable value of 8m/s2. With
this latest upper boundary, a new maximum thrust and thus a new maximum
angular speed were soon identified. Moreover, lower limits were found as well,
since the low-voltage dead bands of the BLDC motors had to be acknowledged
and avoided during flight. In consequence, the data was truncated and the curve
fitting was carried out only for the operating range Ωi ∈ [Ωi,min, Ωi,max], where
Ωi,min = 311.5rad/s and Ωi,max = 1812.7rad/s. This saturation was also imple-
mented in software, on the MCU.

The gathered data after truncation, is showcased in Figures 3.7, 3.8 and 3.9.
In each of the three cases, a least squares straight line approximation (see [57])
has been performed on the data points, yielding a static relationship between
the two parameters plotted against each other, as also done in [16].

Figure 3.7: Relationship Between Ω2
i and Fi

Figure 3.8: Relationship Between Ω2
i and Mi

The lines of best fit do not pass through the origin. In the first two scenarios,
this means that a zero value of either thrust or torque would correspond to
some non-zero angular speed, contrary to what Section 3.4 suggests. For Fi, a
non-zero y-intercept would lead to the need of adding some offset to the right-
hand side of Equation 3.39. In the case of Mi, due to the definition of τz, it does
not matter if we have non-zero y-intercepts, as they would cancel each other
out. This remarks conclude the method of finding kT and bτ. Once known, the
numerical values, together with those of L and α can be substituted into the P
matrix that dictates the thrust mixing. Notice that the entries in the vector of
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Figure 3.9: Relationship Between Ωi and the Pulse Width of the Signal Given to the ESC

squared angular speeds are uniquely identified and can be easily calculated by
multiplying a given set of values in u with the inverse of P, i.e.: P−1, provided
the matrix P is non-singular [58]. Checking the value of det(P) in Matlab, it
was found that the thrust mixing matrix is indeed invertible. Thus, for any u
supplied by the controller, Equation 3.41 always holds:

Ω2
1

Ω2
2

Ω2
3

Ω2
4

 = P−1u (3.41)

If any of the entries in the solution vector happens to be negative, the min-
imum speed Ωi, min is utilized as a motor command instead. The relationship
between the angular speeds and the pulse widths required to produce them (in
the standard PWM protocol) is given in Equation 3.42. On the microcontroller,
commands are sent using the Oneshot125 ESC protocol. The preceding formula
is first used to convert desired angular speeds to pulse widths compatible with
standard PWM, and a simple mapping is subsequently employed to obtain their
correct Oneshot counterparts.

PW(Ωi) = 0.4Ωi + 948.9 (3.42)

Table 3.1 lists all the constants that have been estimated.

Table 3.1: Constant Parameters of the UAV

Parameter Estimated Value
m 0.777kg
Ixx 0.0067kgm2

Iyy 0.0059kgm2

Izz 0.0116kgm2

L 0.11m
α 1.439rad
kT 1.0547 · 10−6Ns2/rad2

bτ 7.4038 · 10−9Ns2/rad2
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3.11 Open-Loop Response

After the unknown physical parameters have been identified, modeling the plant
in Simulink was the next logical step. Using the sets of equations listed in
Section 3.7, a linear, as well as a nonlinear model, have been constructed. The
purpose of the present section is to briefly discuss the differences between the
two.

The nonlinear model is too complicated to be made using discrete Simulink

blocks. Therefore, it was built by implementing the nonlinear quadrotor equa-
tions given by Equation 3.31 through Matlab functions within the Simulink

environment. Since that is the case, there is little point in showing the utilized
structure, for it is not intelligible without direct access to the .slx file. The lin-
earized decoupled quadrotor equations (Equations 3.37 and 3.38) can be, how-
ever, easily represented in block diagram format, as shown in Figure 3.10.
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Gθ, x

Figure 3.10: Block Diagram of the Linear Decoupled Quadrotor Model

It is important to mention that all the inputs and states in this block diagram
denote the deviations from the hovering condition. This is especially relevant
for T, which is actually the result of subtracting T̄ = mg from the real thrust and
should be accounted for when comparing the linear and nonlinear responses to
inputs involving thrust. In order to assess the similarity between models, we
supply different vectorial excitation inputs u close to ū and observe how some
relevant states respond. Figure 3.11 illustrates precisely that. The exact input
utilized in each studied case is placed as a sub-figure title.

It is quite apparent from Figure 3.11(a) that, when only an upward force
higher than gravity, is inserted into the system, both models behave very sim-
ilarly and the altitude increases exponentially. When an additional entry cor-
responding to the torque about the zB-axis is considered (Figure 3.11(b)), ψ
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(a) Altitude Response to T (b) Yaw Response to T and τz

(c) Position Response to T, τx and τy (d) Attitude Response to T, τx and τy

Figure 3.11: Open-Loop Response of the Linear and Nonlinear Systems

responds in an exponential manner as well, and the curves are again super-
imposed. Nevertheless, differences start to appear once we remove τz, but add
some small constant τx and τy instead. Thrust is also being manipulated in such
a manner in order not to let the drone lose altitude due to the induced rolling
and pitching. In Figure 3.11(c) and (d), the simulation is performed for small
angular deviations. In this case, due to the approximations made, one can re-
mark that the linear roll and pitch have a product that start equal to but slowly
becomes smaller than that of their nonlinear counterparts. This means the dy-
namically calculated thrust will eventually be greater than the required one,
which is exactly the observed behaviour in the linear case, while the nonlinear
altitude stays at 0. It is also worth noting that the angular coupling created by
the W(η) matrix forces the yaw to change even when τz = 0 in the nonlinear
model, while the decoupling prevents that from happening if we look at the lin-
ear scenario. Finally, we also observe from Figure 3.11(c) that the evolution of
the x and y position is very similar in both situations.
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Stability Analysis

Based on the linear block diagram in Figure 3.10, let us define the following
continuous-time plant transfer functions in Equation 3.43. They can also be
obtained by taking the Laplace transform of the system in Equation 3.38:

Gτx, φ =
1

Ixxs2 Gτy, θ =
1

Iyys2 Gτz, ψ =
1

Izzs2

GT, z =
1

ms2 Gφ, y = − g
s2 Gθ, x =

g
s2

(3.43)

All the preceding transfer functions include double integrators, which means
that they have two poles at the origin of the s-plane. Therefore, according to
[59], they are all unstable and controllers are needed to achieve stability and any
desired behaviour.

3.12 Model Validation

The preceding section compared the linear and nonlinear open-loop quadro-
tor models and confirmed a behaviour resemblance around the operating point.
Notwithstanding, it has not been so far demonstrated that any of the models
accurately describe the dynamics of the real UAV system. Model validation is
a procedure consisting of a comparison between the outputs of the model and
actual system, when subjected to the same input. Differences can then be eval-
uated and, based on the purpose of the model, the mathematical representation
can be modified accordingly [60].

Strictly validating the model of the quadcopter around the operating point
in an open-loop configuration is rendered impossible by the inherent instability
of the system. The absence of an already-existing controller that can ensure
the attitude and altitude stabilization of the physical quadcopter system makes
closed-loop model validation unachievable at this point as well. In view of these,
a controller will be developed first and model validation can then be performed
in consideration to the closed-loop response.
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Sensors and Signal Processing

4.1 Attitude Estimation

Inertial Measurement Unit (IMU)

The used IMU consists of an accelerometer, a gyroscope and a magnetometer. It
is an essential element of the quadrotor as it gives information on linear acceler-
ation, angular velocity and magnetism in three body frame axes, which one can
use to estimate the orientation of the drone [61]. Below, each of these sensors are
explained in enough detail to comprehend their advantage and disadvantage
over each other in terms of attitude estimation.

Accelerometer

An accelerometer measures three-axis acceleration and its output follows the
Equation 4.1 where am is the measured acceleration and m is the body mass [62].
The measured acceleration is with respect to the gravity and thus it is seen in the
equation that gravitational force is subtracted from the sum of all forces on the
body [63]. However, the utilised IMU considers positive ẑG to point downwards
which is in contrast to our convention where we chose it to point upwards.
Therefore, we insert the negative of the already-defined gravitational force into
the equation.

am =
1
m

[
FB − BIR

(
−Fg

)]
(4.1)

During the steady state of hovering, FB becomes equal to zero and the ac-
celerometer measurements in the body frame takes the form in Equation 4.2
[64]:

27
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am =
1
m
B
IRFg =

 cψcθ cθsψ −sθ

cψsφsθ − cφsψ cφcψ + sφsψsθ cθsφ

sφsψ + cφcψsθ cφsψsθ − cψsφ cφcθ

 0
0
−g

 =

 gsθ

−gcθsφ

−gcφcθ


(4.2)

Extracting roll and pitch angles from three-axis acceleration measurements
during steady state is now straightforward as shown in Equation 4.3 where the
notation " ˆ " signifies estimated angles.

φ̂ = arctan
(

am,y

am,z

)
θ̂ = arcsin

(
am,x

g

)
(4.3)

Using only an accelerometer, roll and pitch angles can be estimated in this
manner. However, the yaw angle cannot be determined in the same fashion
because the accelerometer measurements do not depend on yaw, as seen in the
result of Equation 4.2. It is important to note that we assumed FB to be zero, thus
we did not take vibration and other forces into account. In reality, these forces
will introduce high frequency noise and have direct influence on the estimated
angles [65, 66]. It is also best practice to place the accelerometer close to the
center of rotation as much as possible so that the measurements are least affected
by rotations.

Gyroscope

A gyroscope measures three-axis angular velocity, ωB, and can be used to esti-
mate all three Euler angles. Knowing that our quadrotor will need to accelerate
to reach its reference position, one upside of using a gyroscope instead of an
accelerometer is that it is not affected by external forces and, therefore, provides
more reliable measurements under acceleration [67]. In order to calculate the
orientation of the quadrotor using a gyroscope, we first need to obtain the rate
of change of Euler angles from its angular velocity output due to apparent rea-
sons explained in Section 3.3 [62]. Equation 3.11 gives us the Euler angle rates
which we can integrate to estimate the Euler angles. Equation 4.4 is the mathe-
matical description of this calculation where the sampling period is fixed at Ts
and " + " indicates the new estimate.

η̂+ = η̂+ Tsη̇ (4.4)

This way of estimating Euler angles using a gyroscope is immune to propeller
vibration and any sort of external forces. Nonetheless, the sensor is inherently
noisy. As we iteratively sum the measurements to estimate the Euler angles, we
are actually also introducing error to our estimation. Over time, the error will
accumulate and the Euler angle estimates will drift away from the reality [65].
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Magnetometer

A magnetometer measures the geomagnetic field Bm in three axes and is used to
obtain a yaw estimate. If no magnetic distortion is present in the environment
and the sensor is rotated around its axes in all directions, its measurements
will lie on the surface of a sphere centered at the origin with a radius being
equal to the strength of the geomagnetic field [67]. A magnetic disturbance,
on the other hand, will distort these spherical measurements and, hence, result
in less accurate yaw estimates [65]. Two main sources of distortion are hard-
iron and soft-iron disturbances. A hard-iron source, such as an electric motor
or a wire that has current flow through it, generates its own magnetic field in
addition to the geomagnetic field and the sensor measures the sum of both. This
disturbance due to the hard-iron source shifts the sphere away from the origin.
On the other hand, a soft-iron source, such as a screw, is solely a magnetic
material without the ability to generate its magnetic field. This type of sources
bend the geomagnetic field and turn the spherical measurements into an odd-
shaped spheroid. There is nothing one can do to eliminate randomly time-
varying magnetic disturbances. However, if the disturbance sources are part
of the system and rotate together with the rest of the body such as screws,
nuts and motors, then their effect on the magnetometer measurements can be
eliminated out with sensor calibration. As given in Equation 4.5, subtracting
hard-iron offset vector K from Bm and multiplying the result with the inverse of
the soft-iron distortion matrix D would correct the distorted measurements [62].

Bm,corrected = (Bm −K)D−1 (4.5)

Complementary Filter

Above we point out the strengths and the weaknesses of the three sensors and
explain how their outputs can be used to estimate the Euler angles. In short,
a gyroscope provides resistance to vibrations which is a feature that we want
to acquire, but fails to maintain long-term stability due to drift in its measure-
ments [65]. On the other hand, an accelerometer’s attitude information comes
with long-term stability. However, its measurements are noisier. A magnetome-
ter provides an additional yaw estimate along with the gyroscopic one but it
requires calibration for higher accuracy1. Due to these reasons, it is not possible
to utilize a single sensor and accurately estimate the Euler angles. One way to do
so is to combine their outputs and benefit from their separate advantages. Sen-
sor fusion with a complementary filter will exhibit the best of all and produce
accurate angle estimates that avoid long-term angular drift and are resistant to
vibrations [68].

1Due to time constraints, the magnetometer has not been calibrated and used in this project.
Instead, the gyroscope is utilized to obtain the yaw angle, which did not drift almost at all during
the short hovering test sessions.
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The basic building blocks of a complementary filter are a high-pass and a
low-pass filter [62]. The filters are used to eliminate the sensor noise at different
frequencies. Using this filter, one can complement reliable low frequency signal
from the accelerometer and reliable high-frequency signal from the gyroscope
for better estimation results. This idea is demonstrated in Figure 4.1 where xa
and xb denote measurements from the gyroscope and the accelerometer, respec-
tively.

Low Pass Filter

High Pass Filter

xb

xa

x̂

Figure 4.1: Complementary Filter Block Diagram

Raw IMU Measurements

Before the design procedure of the filters, it is important to examine the raw
IMU measurements and confirm their behaviour. On the basis of several tests,
it is observed that arbitrary offsets in IMU angle measurements that are large
enough to make the quadrotor unstable are present. In order to calculate them
dynamically, raw IMU measurements are summed for five seconds during the
arming session of the motors and divided by the number of samples. The off-
sets are then subtracted from the sensory output. In Figure 4.2, one can see the
raw accelerometer and gyroscope measurements for φ and θ, after offsets are
removed. As discussed previously, accelerometer gives extremely noisy mea-
surements while gyroscope’s output drifts in the long run.

Figure 4.2: Accelerometer and Gyroscope Raw φ and θ Measurements - Offsets Are Removed
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Low-Pass Filter Design

In order to determine the cut-off frequency, fc, for the continuous-time low-pass
filter, FFT of the raw accelerometer measurements are obtained using Matlab,
shown in Figure 4.3. It is seen that the noise can be found at frequencies as low
as 1Hz and we anticipate that the cut-off frequency needs to be less than that.

Figure 4.3: FFT of Raw Accelerometer Measurements - Quadrotor Is Stationary

In the process of determining the cut-off frequency, several filters that we
designed using SPTool on Matlab have been applied on the raw accelerometer
measurements. The results are given in Figure 4.4. The best filtering is obtained
when fc is chosen to be 0.5Hz while significant level of noise could still be
observed with the other filters.

Figure 4.4: Filtering Raw Accelerometer Measurements Using Different Continuous Time Filters

Due to its ease of implementation on a microcontroller, we opted for imple-
menting Direct-Form 1 IIR filter type [68]. After having finalized the filter design
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using SPTool using a sampling frequency of 500Hz, we saved it as a z-domain
transfer function in the form demonstrated in Equation 4.6 where n and d stand
for "numerator" and "denominator".

LPF(z) =
n1z + n2

d1z + d2
(4.6)

The linear constant-coefficient difference equation (LCCDE) used to imple-
ment the filter on the microcontroller is found in Equation 4.7.

a0y[n] =
1

∑
i=0

bix[n− i]−
1

∑
j=1

ajy[n− j] (4.7)

where the coefficients are given in Equation 4.8:
a0 = 1
a1 = d2/d1

b0 = n1/d1

b1 = n2/d1

(4.8)

Figure 4.5 illustrates the filter structure for the used 1st order direct-form 1
IIR filter.

−a1b1

x[n] y[n]

z−1 z−1

b0

Figure 4.5: 1st Order Direct-Form 1 IIR Filter Structure

High-Pass Filter Design

A feature of complementary filters is the monotonic unity gain in the output
such that the transfer function of the sum is an all-pass filter, meaning 0dB gain
at all frequencies. In order to maintain this property, the transfer function for
the high-pass filter for the gyroscope is calculated by subtracting the low-pass
filter transfer function from unity as shown in Equation 4.9. Its discrete form
is implemented on the microcontroller in the same manner that is done for the
low-pass filter.

HPF(z) = 1− LPF(z) (4.9)

Complementary Filter Results

Figure 4.6 plots the magnitude response of the complementary filter across the
frequency spectrum [65]. As it is expected, it does not attenuate or amplify the
signal but rather passes it at its own magnitude while allowing us to eliminate
signals of undesired frequencies from the sensor measurements.
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Figure 4.6: Complementary Filter Magnitude Plot

Figure 4.7 plots the raw measurements of both accelerometer and the gyro-
scope that are fed into the complementary filter. The output of the filtering is
adequate because the high-frequency noise originating from the accelerometer
and the drift in the gyroscope measurements are eliminated. The complemen-
tary filter outputs reliable Euler angle estimates and proves to be performing as
intended.

Figure 4.7: Complementary Filter Input and Output Signals
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4.2 Position Estimation

Knowing the position of the quadrotor is essential to implementing trajectory
control. Having already employed an accelerometer, we would like to question
whether it is possible to utilize the measured linear accelerations to estimate the
quadrotor position.

The mathematical equation of the accelerometer’s output was given in Equa-
tion 4.1. Simplifying it further gives us Equation 4.10.

am = aB +
1
m
(BIRFg) (4.10)

Solving it for aB and then rotating it into inertial frame are shown in steps
captured in Equation 4.11

aB = am −
1
m
(BIRFg) aI = I

BRam −
1
m

Fg (4.11)

aI can be integrated twice to estimate the position in the inertial frame as
stated in Equation 4.12 where the sampling period is fixed at Ts and vI and rI
represent linear velocity and position in the inertial frame respectively.

vI [n + 1] = vI [n] + TsaI [n] rI [n + 1] = rI [n] + TsvI [n] (4.12)

It seems that it is viable to estimate position using the accelerometer. How-
ever, the inaccuracies of the sensor are likely to introduce error. Even if we could
tolerate those, there is another issue which is the orientation of the sensor. In an
ideal scenario where the reference frame of the accelerometer and the quadrotor
are perfectly aligned, measured accelerations can be assumed to reflect the ones
of the quadrotor. However, if the sensor is misaligned even slightly, linear ac-
celeration parallel to one of the body frame axes might result in sensor readings
in two or three axes [66]. This small error due to the misalignment will accu-
mulate in time and produce extremely faulty velocity and position estimates.
Since we cannot know the orientation of the accelerometer with respect to the
quadrotor body frame with high accuracy, implementing this approach to esti-
mate the position was deemed not feasible. In order to illustrate the effect of
sensor misalignment, we wrote a Matlab script that displays quadrotor’s posi-
tion and orientation in real-time according to IMU measurements, based on the
explained manner of position estimation. Figure 4.8 is the output of the script
when the Euler angles and linear accelerations are set to zero.

As part of the experiment, we purposefully misaligned the accelerometer and
accelerated the drone in x̂G direction. By altering the degree of misalignment,
we could see the effect of mismeasured acceleration over the position estimates.
The estimated position after 10s via this experiment are given in Table 4.1. As
it is seen, a slight misalignment as small as ∼1◦ results in ∼9m drift over the
course of 10s, which is something we cannot tolerate.
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Figure 4.8: Real-time Matlab Animation of the Quadrotor Based on IMU Measurements

Table 4.1: Acceleration and Position Errors Caused Due to Sensor Misalignment

Sensor Misalignment Acceleration Error Position Error after 10 seconds
∼1◦ ∼0.018 m/s2 ∼9 m
∼2◦ ∼0.344 m/s2 ∼17.2 m

Time-of-Flight (ToF) Laser-Ranging Sensor - 1D LiDAR

To estimate the position of the quadrotor reliably, we utilized three ToF ranging
sensors. They are placed on the quadrotor looking in the positive direction of
the body frame axis. The distance measurements done with ToFs are observed
to be very less noisy and very accurate within their range. Therefore, we did
not apply any filtering. However, one problem we faced was that when the
quadrotor rolled, pitched or yawed the sensors also rotated and started mea-
suring distances to other objects. Rotations around a certain axis altered the
distance measurements around the other two axes while, in reality, these dis-
tance were kept the same. To resolve this problem, we took the Euler angles into
consideration and calculated the actual distances from the measured ones. The
theoretical effect of rotations around all three axes and the relationship between
the actual and the measured distances are represented in Figure 4.9.

In order to see if this approach really works, we conducted a test where we
manually changed the yaw angle of the quadrotor while keeping its position in
3D space unchanged. As it is seen in Figure 4.10, measured y-distance is subject
to change when the yaw alters, giving a false distance information. On the other
hand, the y-distance calculated based on the proposed manner remain around
the same level, giving a better position estimation.
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Figure 4.9: The Effect of Euler Angles on Distance Measurements

Figure 4.10: Comparison of Measured and Calculated y-Distances
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Controller Design

5.1 Proportional Integral Derivative (PID) Control

The initial control strategy adopted for regulating the quadcopter’s altitude, xy-
position and attitude was PID, chiefly for its simplicity, demonstrated efficacy
and prevalence in the specialized literature. The well-known time-domain equa-
tion describing the standard PID controller is given in Equation 5.1 [59]:

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de(t)
dt

(5.1)

Since the controller was implemented on a discrete machine, it had to be dis-
cretized. The preceding continuous-time differential equation can be converted
to a linear constant-coefficient difference equation, whose general form is the
one in Equation 5.2 [69]:

N

∑
k=0

aku[n− k] =
M

∑
m=0

bme[n−m] (5.2)

The conversion starts by taking the Laplace transform of both sides of Equa-
tion 5.1. If we also add a low-pass filter for the derivative term, with cutoff
at ωd, we get the continuous transfer function C(s) of the PID (as presented in
Simulink) given in Equation 5.3:

C(s) =
U(s)
E(s)

= kp +
ki

s
+

kdωd

1 + ωd
1
s

(5.3)

Using the bilinear transform

s =
Ts

2
1− z−1

1 + z−1

where Ts denotes the sampling time, to convert from the s-domain to the
z-domain, leads to the discrete transfer function C(z) in Equation 5.4:

37
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C(z) =
U(z)
E(z)

= kp +
kiTs

2
1 + z−1

1− z−1 + 2kdωd
1− z−1

ωdTs + 2 + (ωdTs − 2)z−1 (5.4)

Bringing every term in the right-hand side of Equation 5.4 to a common
denominator, rearranging and taking the inverse z-transform on both sides of the
resulting relation, one obtains a linear constant-coefficient difference equation
(Equation 5.5) for the PID controller:

u[n] =
1
a0
(−a1u[n− 1]− a2u[n− 2] + b0e[n] + b1e[n− 1] + b2e[n− 2]) (5.5)

where the coefficients are given in Equation 5.6:

a0 = 2Tsωd + 4
a1 = −8
a2 = −2Tsωd + 4
b0 = 4kp + 2Tski + 4kdωd + 2Tskpωd + T2

s kiωd

b1 = −8kp − 8kdωd + 2T2
s kiωd

b2 = 4kp + 2Tski + 4kdωd − 2Tskpωd + T2
s kiωd

(5.6)

Complete Control Architecture

A ubiquitous, well-studied method of UAV PID control consists of a hierar-
chical structure comprising two loops, namely an inner loop for attitude stabi-
lization, and an outer loop responsible for position tracking (i.e.: altitude and
xy-position), yielding a total of 6 PID controllers. This nested architecture is
presented in Figure 5.1.
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Figure 5.1: PID Hierarchical Control Structure

Placing the controllers in the fashion shown in the figure is not at all an
aleatory choice. The equations describing the nonlinear system dynamics (Equa-
tion 3.31) prove that the translational motion is dependent on the angular one,
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as the Euler angles influence the position and speed of the quadrotor within the
global frame, and therefore also in the body frame. In order to translate in the
direction of x̂B, the UAV should pitch, i.e. rotate around the yB-axis. Similarly,
to move along a line parallel to ŷB, rolling is necessary. These simple ideas are
already building some sort of intuition that the outer PIDs corresponding to the
xy-positioning should produce the setpoints for the roll and pitch controllers in
the nested attitude loop. As the drone gets closer to the desired location in the
plane, the control signals produced by PIDx and PIDy will converge to 0, which
is exactly what should also happen to the two aforementioned Euler angles to
avoid further movement.

The entity that separates the xy-position errors and the corresponding PIDx
and PIDy controllers is a calculation block indicating a matrix multiplication.
The matrix in question is the yaw rotation matrix Rz(ψ) from Equation 3.2 that
performs a change of basis from the inertial (or global) frame to the first inter-
mediate Euler frame. The multiplication is a real necessity, as both the desired
and the measured position values are expressed in the inertial frame, while the
quadrotor may be tilted by some angle ψ with respect to what has been defined
as the inertial coordinate system. If that is the case, the controller should be
cognizant of the shift in order to produce the correct attitude setpoints.

A graphical representation of the importance of taking the yaw movement
into account is shown in the left-hand side of Figure 5.2. Reaching the desired
position marked by the red dot in the figure is only a matter of pitching if the
UAV’s body axes are aligned to the ones of the inertial frame. However, for
a nonzero value of ψ, it can be observed that an additional need for a rolling
motion emerges. Hence, one may argue that it is actually rather intuitive to
include the aforementioned matrix operation in the proposed control structure.
(Notice that for ψ = 0, the Rz(ψ) becomes the identity matrix I3 and thus no
change of basis transpires.)

The right half of Figure 5.2 illustrates another subtlety which should be kept
in mind when tuning the outer controller in simulation. We assume here, for
simplicity, that the I-frame and B-frame are perfectly aligned. According to
the convention utilized for defining the sign of the Tait-Bryan angles, a positive
pitch tilts the drone forward, meaning that a PIDx controller with positive gains
will increase θd, given a positive error in x. Notwithstanding, roll is defined
as positive when the UAV lowers its right half. From the figure, it is obvious
that the quadrotor would actually drift away from the positive global reference
(again, the red dot), thus increasing the error, if PIDy had positive gains. Nega-
tive controller gains are thus required for position control in the y-direction. This
was found more convenient than giving a negative reference yd in simulation.
Consult Figure 3.6 for doubts regarding rotations with positive Euler angles.

Regarding the four controllable inputs to the quadrotor, they are supplied
through the other four controllers. Thrust is generated as a result of the effort
of PIDz, whereas PIDφ, PIDθ and PIDψ coalesce into the attitude compensator
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Figure 5.2: Left: Importance of Knowing the Yaw Angle When Tracking an xy-Position Reference;
Right: Necessity of Negative Gains for PIDy

which creates the required torque components of τB.

Control Signal Saturation

Saturation plays a pivotal role in the controller’s modus operandi, as it restricts
the speed with which the controlled outputs can achieve the references, in an
effort to take into account in simulation the limited real-world hardware-related
system capabilities. The thrust was saturated between [Tmin, Tmax], where the
limits were taken as four times the upward force generated by one motor (recal-
culated using the linear least squares fit) for the chosen maximum speed Ωi, max
of 1812.7rad/s and minimum speed Ωi, max of 311.5rad/s, respectively. In the
case of τz, the limits [−τz, max, τz, max] have been chosen such that τz, max is twice
the maximum reaction torque at Ωi, max, because the motor pairs spin in oppo-
site directions. Saturating boundaries for τx and τy have been set following the
same argument. Another important utilization of saturation is concerned with
the control signals φd and θd which act as desired roll and pitch values. Recall
from Section 3.3 that the matrix W(η) is non-singular for non-steep pitch angels.
Since aggressive flight does not constitute the focus of this report, the singularity
was avoided by restricting both θd and φd to a relatively small range symmetric
about 0 rad. Table 5.1 lists the calculated and chosen, when applicable, satura-
tion boundaries for all the control signals present in the structure of the MIMO
PID controller. Even though not explicitly indicated in Figure 5.1, the altitude
output was saturated as well, between [0, ∞], for there is no such thing as a
(scalar) negative height in the real world.
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Table 5.1: Saturation of Hierachical PID Control Signals

Control Signal T τz τy τx φd θd
Lower Saturation 0.41N −0.049Nm −0.5Nm −0.57Nm − π

20 − π
20

Upper Saturation 13.86N 0.049Nm 0.5Nm 0.57Nm π
20

π
20

5.1.1 Altitude and Attitude Control

The tuning procedure for a hierarchical arrangement such as the one in Fig-
ure 5.1 supposes that the gains for the inner loop are chosen prior to the ones
of the outer loop. In the further discussion of the tuning and simulation re-
sults, it is thus natural to look into the inner controllers first. Since PIDz is not
influencing the angle references, this is also included in this initial assessment.
Omitting the xy-position controllers, the presented PID structure reduces to the
one in Figure 5.3. This is the arrangement that was utilized to achieve altitude
and attitude stabilization as the first phase of PID implementation.
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Figure 5.3: PID Altitude and Attitude Control Structure

Tuning a PID controller has been the subject of countless research articles.
Apart from the complex and innovative approaches, classical control theory
tools, such as root locus or frequency response are available to the designer.
In spite of the wide documentation available on these latter tuning methods
(e.g.: [59, 70]), employing them when trying to find suitable gains for the lin-
earized version of a highly nonlinear system, only to change these gains later
in simulation when control signal saturations and other necessary nonlinearities
are considered, can be time consuming. Thus, in this project, the approach taken
was a heuristic one, in which the tuning was performed in simulation, directly
on the nonlinear model. Also, we first considered the continuous controller
case. In order to expedite the manual tuning process, the closed-loop system
was simulated employing the immediately-available Simulink PID blocks, with
an (at first) ideal derivative and clamping chosen as the integrator anti-windup
method.

The desired response characteristics were of course short rise and settling
times, as well as low overshoot and steady-state error. Speed is especially im-
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portant in the case of the attitude loop, which would be later placed inside its
xy-position counterpart. Automated tuning was able to soon provide some ini-
tial gain values, which were further subjected to manual fine tuning. The final
gains are given below:

PIDz : kp = 15, ki = 8 kd = 7
PIDφ : kp = 3, ki = 2 kd = 0.25
PIDθ : kp = 3, ki = 2 kd = 0.25
PIDψ : kp = 2, ki = 0.5 kd = 0.4

Regarding the fact that the parameters of the roll and pitch controllers turned
out to be the same in magnitude did not come as a surprise. Table 3.1 demon-
strates that the estimated moments of inertia about the airframe’s x- and y-axis,
respectively, (Ixx and Iyy) are almost equal, so a controller similarity was ex-
pected.

Sample Rate Selection

In the affair of implementing a controller on a discrete machine, sampling repre-
sents an important issue. The sampling times were selected based on the sensor
capabilities. The IMU is able to produce new measurements quite fast (less than
2ms), while the one-dimensional ToF sensor measuring altitude outputs a value
every 30ms. In view of these, we chose the following sampling periods:

Ts,η = 2ms Ts,z = 33ms

where Ts,η corresponds to the attitude loop, whereas Ts,z dictates the sam-
pling for the altitude loop. In each case, on an MCU level, reading a new sensor
value and performing the necessary PID calculations should be done within the
correct available time frame.

Discretization has important effects on the controller performance and thus
ensuring correct sampling represented a priority. In [71], the following relation-
ship (Equation 5.7) between the closed-loop bandwidth fb and the sampling rate
fs is suggested for practical use, to provide smooth time responses:

20 <
fs

fb
< 40 (5.7)

even though the absolute minimum limit for fs is 2 fb, by Nyquist’s sampling
theorem [71].

In order to simulate, in continuous time, the effects of discretization, which
adds delay to the system, a zero-order hold (ZOH) was placed between the
continuous controller and the continuous plant model. From [71], we have that
the transfer function that approximately models the delay introduced by the
ZOH is given by Equation 5.8:
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Hd,ZOH =
2/Ts

s + 2/Ts
(5.8)

The closed-loop bandwidths of the system considered in this altitude and at-
titude arrangement that suffices hovering stabilization were calculated in Mat-
lab based on the linear model description in the s-domain (Equation 3.43). The
Bode magnitude plots of the closed-loop transfer functions (including the con-
tinuous ZOH delay approximation) corresponding to each of the four controlled
variables are shown in Figure 5.4. (The plots for the attitude loop are almost
superimposed.)

Figure 5.4: Closed-Loop Magnitude Bode Plots for Continuous Altitude and Attitude Control

while the bandwidths (converted to Hz) are listed below:

fb,z = 2.01Hz, fb,φ = 7.96Hz, fb,θ = 8.81Hz, fb,ψ = 6.44Hz

It is now clear that the attitude loops are sampled sufficiently fast, given
fs,η = 500Hz. For altitude, we have fs,z = 30Hz, which is 15 times greater than
the bandwidth, an arguably satisfactory result.

With the bandwidths calculated, it was also possible to add low-pass filters
for the individual PID derivative terms to limit sensor noise amplification [59],
with each ωd being taken as 10 times the corresponding bandwidth (in rad/s),
to avoid filtering any useful signal.

Simulation

For hovering, seeking the accurate tracking of a height reference is evidently the
end goal, while the desired behaviour for the roll and pitch Tait-Bryan angles is
a decay to 0. However, setting a reference of 0 for the latter case does not prove
that the attitude controller is able to eventually drive the outputs to this value1.
Either initial non-zero values for the angles or non-zero angle references should
be used for this purpose. We selected the set points φd = θd = ψd = 1.

1Doing this simply prohibits the angles in question from changing, which is essentially equiv-
alent to using the more complex structure in Figure 5.1 with xd = yd = 0
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The simulation results are shown in Figure 5.5, for altitude, and Figure 5.6,
for attitude. In all pictures, the responses for both the continuous and discrete
controller are illustrated, with the employed discretized PID being the one pre-
sented in Equation 5.4. We emphasize again that all responses correspond to the
nonlinear model.

Figure 5.5: Closed-Loop Altitude Response of the Nonlinear Model

It is immediately noticeable that the discrete and continuous controller per-
form very similarly, especially when it comes to attitude stabilization. In altitude
control, there is only a slight mismatch in the initial phase of the transient pe-
riod. The approximate time-domain specifications for the responses generated
by the discrete PID controller can be found in Table 5.2:

Table 5.2: PID: Attitude and Altitude Time Domain Specifications

Rise Time [s] Settling Time [s] Overshoot [%]
z 3 4 0
φ 0.2 0.25 0.5
θ 0.2 0.25 0.5
ψ 0.75 1.3 15

5.1.2 Position Control

Moving back to the structure presented at the very beginning of the present sec-
tion, the outer PIDs and the calculation block are now included in the hierarchi-
cal controller. With the inner loop now tuned to give a satisfactory performance,
the process of selecting the parameters for xy-position control can begin. The
gains of the controllers of global position in the horizontal plane were again
selected following the same heuristic procedure, by constantly checking the re-
sponse of the nonlinear continuous-time system. The final gain sets are given
below:
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Figure 5.6: Closed-Loop Position Response of the Nonlinear Model Top to Bottom: φ, θ, ψ

PIDx : kp = 0.6, ki = 0.004 kd = 0.4
PIDy : kp = −0.6, ki = −0.004 kd = −0.4

As expected, the PIDy gains are negative and have the same absolute value
as the ones of PIDx.

Sampling Rate Selection

ToF sensors similar to the aforementioned one were used for obtaining infor-
mation about the UAV’s position within the global horizontal plane. Hence,
the sampling time for this newly-added loop was chosen to be identical to Tz,
namely 33ms. Let us relabel this time Tp. We thus truly obtain a cascade control
system, running at two distinct frequencies, fp and fη. As before, ZOH blocks
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were added after the PIDs. To check if the sampling satisifies Equation 5.7, the
Bode magnitude plots of the closed-loop transfer functions (encompassing the
previously-found closed-loop input-output relationship of the φ and θ loops)
were consulted (see Figure 5.7):

Figure 5.7: Closed-Loop Magnitude Bode Plots for Continuous xy-Position Control

The identified bandwidths were in this case:

fb,x = 0.97Hz, fb,y = 0.98Hz

which are well within the desired range. Corner frequencies for the two
derivative term low-pass filters of the PID controllers were chosen to be multi-
ples of 10 of the bandwidths (converted to rad/s).

Simulation

The simulation results for a position reference (xd, yd, zd) = (1, 1, 1) and yaw
reference ψd = 0 are displayed in Figure 5.8, showing the responses for xy-
positioning, and Figure 5.9, illustrating how the inner loop tracks the reference
of the outer loop until a correct decay to 0.

The fact that the system responses to the continuous and discrete controllers
are almost indistinguishable substantiates again the good choice of sampling
times. The time specifications for position control are listed in Table 5.3:

Table 5.3: xy-Position Time Domain Specifications

Rise Time [s] Settling Time [s] Overshoot [%]
x 1.5 1.8 0.1
y 1.5 1.8 0.1
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Figure 5.8: Closed-Loop Position Response of the Nonlinear Model Top to Bottom: x, y

Figure 5.9: Attitude Response of the Nonlinear Model During Position Control. Top to Bottom:
φ, θ
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5.1.3 Trajectory Tracking

It was also investigated if the developed controllers could be utilized in con-
ditions of changing references and trajectory tracking. A very popular choice
utilized in the literature for such purposes is the rising 3D helix (or spiral) [72,
73, 74, 75]. One example of such a curve which was utilized as a reference
trajectory in this project is given by the position vector in Equation 5.9:

rd,G(t) =
[
xd yd zd

]T

xd(t) = cos(0.4t), yd(t) = sin(0.4t), zd(t) = 1 + 0.1t
(5.9)

which effectively describes a parametric curve whose projection on the xy-
plane is a circle with a radius of 1m.

For simplicity, we let ψd = 0. The simulation is carried out for t = 50s and
the results - for the two controller versions - when the system is excited with the
preceding reference signal are pictured in Figure 5.10. It is clear that the drone
would theoretically be able to closely follow the helical curve.

Figure 5.10: 3D Helix Trajectory Tracking Response of the Nonlinear Model
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5.2 Linear Quadratic Regulator (LQR) Control

The following section shifts its attention towards the LQR controller and will
deal with its control architecture as well as the tuning procedure with respect to
the required performance parameters.

Introduction to LQR

Primarily, a state space model is created based on the set of linear equations in
3.38, presented in Section 3.8. This model needs to be checked for controllability
which determines a system’s ability to reach any linear combination of its states
in a finite amount of time [70]. This is identified through the controllability
matrix (shown in Equation 5.10), such that the said matrix should comprise of a
full rank and the rank should be equal to the number of states, for the system to
be controllable.

C =
[
B AB A2B A3B . . . An−1B

]
(5.10)

In the case of the quadrotor system, the matrix was found to be of full rank,
equalling the number of states, i.e.: 12.

LQR is a modern control method which aims at optimal control through the
use of a performance index or cost function, stated in Equation 5.11. To achieve
the optimal control, this method seeks to find the appropriate control law which
on application in a closed loop design will perform the optimal control actions
resulting in a minimized cost function J.

J =
∫ ∞

0
(xTQx + uTRu)dt (5.11)

In the cost function, the Q ∈ Rn×n and R ∈ Rm×m are positive definite sym-
metric matrices, which implies that the cost is non negative and its minimum is
zero [70]. Q is a diagonal matrix with each element of the diagonal correspond-
ing to a particular state and if a certain element of the diagonal is large it means
a higher cost for the associated state. Accordingly, to make the state converge
faster we increase its corresponding diagonal element. Similarly, R is associated
with the control input and the higher its values the more we penalize controller
effort. Consecutively, the tuning procedure for LQR involves finding the appro-
priate Q and R matrices based on the performance requirements. These matrices
are curial to finding the control law as illustrated in Equation 5.12. The optimal
gain matrix K is identified using Equation 5.13, which employs the positive
definite symmetric matrix P (not to be confused with the thrust mixing matrix
denoted by the same letter). Now, P is determined through the algebraic Riccati
equation (Equation 5.14).

u = −Kx (5.12)



50 Chapter 5. Controller Design

u = R−1BTP (5.13)

ATP + PA + Q− PBR−1BTP = 0 (5.14)

In this project’s case, Matlab command K = lqr(A, B, Q, R) was used to
find the optimal gain matrix.

The tuning of Q and R matrices is mostly heuristic but as an aid, the Bryson’s
rule is employed which provides the initial values for these matrices. Corre-
spondingly, according to the rule, the diagonal elements of the matrices are ini-
tiated to the inverse of the square of maximum acceptable value of the associated
state or input, as illustrated in Equation 5.15.

Qi,i =
1

x2
i,max

Rj,j =
1

u2
j,max

(5.15)

The maximum values were applied based on Table 5.1 in Section 5.1. As
for the position coordinates x, y, and z, the maximum threshold was obtained
according to the range limit of the LiDAR sensors used for each coordinate.

Control Architecture

Similar to PID, the LQR controller design is done through an approach which
divides the procedure into three parts, each in consideration to altitude, atti-
tude and the xy-position control. As shown in the figure, the control structure
is arranged in a hierarchical fashion with the outer layer comprising the trans-
lational position controller and the inner layer including the attitude controller.
Additionally, the yaw rotation block is used in the xy-position control with the
functionality of changing the basis of the x and y position error from inertial (or
global) frame to the first intermediate Euler frame. This structure was designed
with the assumption of full state feedback from the actual system. As com-
pared to the method which embodies the system as just one single state-space,
the hierarchical structure allows for a more intuitive and systematic approach as
each controller could be tuned individually, without effecting the others. Fur-
thermore, this enables the switching between different control structures based
on the situation. For example, in the case of loss of x and y sensor output, the
xy-controller could be removed and a switch to a fixed reference for the atti-
tude controller can be made, in order to maintain the quadrotor in a hovering
condition [21].

The controller is developed with the purpose of maintaining the system at
a certain reference. However, in the case of the standard LQR architecture, the
system won’t reach the references resulting in a steady state error. Therefore,
we add an ad hoc solution to the steady state error problem by using integral
control. It is implemented by augmenting the integrator dynamics with the state
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Figure 5.11: LQR Control Structure

vector such that the integral of the error is treated as a state and is fed-back. This
results in a change in the state space model as well as the control law, shown in
Equations 5.16 and 5.17 respectively.[

ẋi
ẋ

]
=

[
0 C
0 A

] [
xi
x

]
+

[
0
B

]
u +

[
−1
0

]
r

y =
[
0 C

] [xi
x

] (5.16)

u = −Kaxa, where Ka =
[
Kc Ki

]
(5.17)

Controller Design Requirements

In order to proceed further, some design requirements need to be specified for
the LQR controllers. These requirements will act as guidelines while tuning the
Q and R matrices. A general requirement, which is rather intuitive to under-
stand is that the Tait-Bryan angles should stabilize faster to their steady states as
compared to the translational positions. Subsequently, this is also evident from
the cascaded nature of the attitude and xy-position controllers. Accordingly, as
it can be seen in Figure 5.11, the roll and pitch controller make the inner loop
of the cascaded structure, thus φ and θ angle should converge faster than the x
and y positions. The roll and pitch angles are of primary importance when it
comes to the quadrotor stabilization and as a result, the requirements for their
controllers is the most aggressive. Also, due to the symmetric structure of the
quadrotor, the rolling and pitching actions are very similar, resulting in the same
magnitude for their controller gains. As for the outer loop, the xy-position con-
troller requirements are based such that it is at least 4-5 times slower than the
inner loop, in terms of rise time. Moreover, from the non-linear equations 3.31,
it can be seen that the dynamics for the x and y positions are also influenced
by the yaw angle. Therefore, the yaw control requirements are selected in such
a way that the oscillations around yaw reference does not affect the controller
effort for xy-stabilization. Lastly, the altitude controller desideratum is decided



52 Chapter 5. Controller Design

on the reasoning that an aggressive altitude controller can make the other states
unstable. This is because the altitude controller puts an equal input to all the
motors and this could result in a higher turning torque. Conclusively, each con-
trollers’ design needs are given in the table 5.4, in consideration to the rise time
and overshoot. It should be noted that in the case of translational position, the
specifications for overshoot was chosen based on the sensor limit. This is to
prevent the loss of sensor info which might happen if the drone overshoots and
flies out of the sensor range. In addition, the overshoot characteristics for Euler
angles were based on the maximum tilt angles such that even in the case of over-
shoot, the drone doesn’t exceed the tilt limit. Regarding settling time, no specific
requirement is set, but as a guideline, the shortest possible time is preferred.

Table 5.4: LQR Performance Requirements

Rise Time [s] Overshoot [%]
φ ≤ 0.5 ≤ 10
θ ≤ 0.5 ≤ 10
ψ ≤ 1 ≤ 10
x ≤ 2 ≤ 10
y ≤ 2 ≤ 10
z ≤ 1.2 ≤ 5

LQR Tuning

The tuning of the LQR controllers was performed in successive steps. First, the
linear models for each of the altitude, attitude and xy-position were obtained by
dividing the system into three parts based on the set of linear equations shown
in 3.38. Next, the Q and R matrices for each controller were tuned based on these
linear models. This provided a much simpler way to the tuning procedure as the
linear equations are mostly decoupled, allowing the adjustment of the above-
mentioned matrices without concerns of affecting the stability of other states,
except in the cascaded scenario. Accordingly, once a satisfactory response was
achieved, the performance of the controllers was corroborated on the nonlinear
model of the quadrotor. In addition to the model being constructed based on
the non-linear equations in 3.31, another aspect of non-linearity was added with
the saturation limits for the inputs. During this process, the optimal gain matrix
K is first identified in Matlab for the linear model and then verified on the
non-linear model in Simulink. In the case of lacking performance, the Q and R
matrices were readjusted to meet the performance desideratum.

5.2.1 Altitude Controller

The state space for the altitude section of the system is governed by the system
matrix Aal and the input matrix Bal, given in Equation 5.18:
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Aal =

[
0 1
0 0

]
Bal =

[
0
1
m

]
(5.18)

in consideration to the state vector for altitude in Equation 5.19:

xal =
[
z ż

]T (5.19)

Furthermore, ual and yal are the input and the output for the said system,
respectively, as shown in Equation 5.20, in which T refers to the thrust generated
by the motors:

ual = T yal = z (5.20)

Now, to implement integral action, an integral state is augmented and a new
state space is obtained which follows the structure of Equation 5.16. For this
system, the optimal gains Ki,al and Kc,al are obtained corresponding to the tuned
Qal ∈ R3×3 and Ral ∈ R1×1.

Qal =

0.3 0 0
0 0.05 0
0 0 0.02

 Ral = 0.0003

Ki,al = 31.6228 Kc,al =
[
28.8910 10.5624

]
The step response for the closed loop system is shown in Figure 5.12. Also,

the properties of the response are listed in Table 5.5. According to these proper-
ties, it can be said that the controller fulfills the requirements.

Figure 5.12: Altitude Response for LQR Altitude Control

Table 5.5: Altitude Controller Parameters

Rise Time [s] Settling Time [s] Overshoot [%]
z 1.16 4 1.6
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5.2.2 Attitude Controller

This controller aims at the stabilization of the Euler angles φ, θ, and ψ. Along
with these angles, the angular velocities (equivalent to the Euler rates in the
linearized model) are also treated as states of the system, consequently leading
to the state vector xat in Equation 5.21.

xat =
[
φ θ ψ φ̇ θ̇ ψ̇

]T (5.21)

Moreover, the system matrix and the input matrix for attitude control is given
by Aat and Bat respectively, both appearing in Equation 5.22:

Aat =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 Bat =



0 0 0
0 0 0
0 0 0
1

Ixx
0 0

0 1
Iyy

0

0 0 1
Izz


(5.22)

The system is controlled by the input torques τx, τy, and τz for rolling, pitch-
ing and yawing respectively. As for the output, it is comprised of the Euler
angles, as shown in Equation 5.23.

uat =
[
τx τy τz

]T yat =
[
φ θ ψ

]T (5.23)

Just like the altitude controller, integral control is applied to eliminate the
steady state error. Once the new system is obtained, the optimal control gain
matrices Ki,at and Kc,at are acquired through tuning Qat ∈ R9×9 and Rat ∈ R3×3,
shown below.

Qat = diag(
[
30 30 15 0.01 0.01 0.5 0.01 0.01 1

]
)Rat = diag(

[
0.1 0.1 1

]
)

Ki,at =

17.3205 0 0
0 17.3205 0
0 0 3.873



Kc,at =

3.6739 0 0 0.3867 0 0
0 3.6357 0 0 0.3787 0
0 0 2.9164 0 0 1.0335


Similarly, the step response for the φ, θ, and ψ are shown in Figure 5.13 and

performance characteristics can be seen in the Table 5.6.
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Figure 5.13: φ. θ, and ψ Responses for LQR Attitude Control

Table 5.6: Attitude Controller Parameters

Rise Time [s] Settling Time [s] Overshoot [%]
φ 0.5 1 0.4
θ 0.5 1 0
ψ 0.9 2 0

5.2.3 xy-Position Controller

In the case of position control, the system results in the state space comprising
of matrices Axy and Bxy (Equation 5.24).



56 Chapter 5. Controller Design

Axy =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 Bxy =


0 0
0 0
0 g
−g 0

 (5.24)

The above state space uses the state vector xxy which is equivalent to the
combination of states shown in Equation 5.25.

xxy =
[
x y ẋ ẏ

]T (5.25)

Moreover, due to the cascaded structure of the attitude and xy-position con-
trollers, the input vector uxy for the outer loop is composed of the Euler angles
relating to the roll and pitch motion of the quadrotor (uxy shown in Equation
5.26). As a result, the references for the roll and pitch angles are no longer
constant and change with time until converging to zero, which is the angular
position that defines the hover condition. In addition, understandably so, the
outputs of the system are the x and y positions, as illustrated in Equation 5.26.

uxy =
[
φ θ

]T yxy =
[
x y

]T (5.26)

It is to be noted that during the tuning procedure for this controller, the
initial control gains used for the inner attitude control are the same as the ones
found in the last section. While using the same gains, the outer loop LQR is
tuned to achieve satisfactory responses. However, to obtain a better performance
the inner attitude controller is readjusted to be more aggressive resulting in
a quicker response of the outer loop’s x and y positions. Correspondingly, the
Qxy ∈ R6×6 and Rxy ∈ R2×2 are the driving factors for the found optimal control
gains Ki,xy and Kc,xy.

Qxy = diag(
[
5 5 0.8 0.8 0.1 0.1

]
) Rxy = diag(

[
100 100

]
)

Ki,xy =

[
0 −0.2236

0.2236 0

]

Kc,xy =

[
0 −0.3607 0 0.273

0.3607 0 0.273 0

]
Like the previous sections, the step responses for both outputs are plotted in

Figure 5.14 along with the performance characteristics given in Table 5.7. Also,
a comparison between the reference angles (supplied by the outer loop) and the
φ and θ angle dynamics is depicted in the Figure 5.15.

In the end, based on the performance of each controller for all the controlled
states, it is suffice to say that the tuned controllers were able to stabilize the
system with respect to the required specifications.
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Figure 5.14: xy-Position Closed-Loop Response for LQR

Figure 5.15: Roll and Pitch Dynamics in the Case of Position Control for LQR
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Table 5.7: xy-Position Controller Parameters

Rise Time [s] Settling Time [s] Overshoot [%]
x 1.7 5 2.3
y 1.7 5 2.2

5.2.4 Trajectory Tracking

Throughout the previous sections, the focus has been on the development of the
suitable LQR controllers. As such, the obtained controllers can now be checked
for their reference tracking capabilities. This can be done through the implemen-
tation of a helical reference trajectory, which has already been tested for the PID
controller in Subsection 5.1.3. Therefore, to maintain consistency, the LQR con-
troller will be verified for the same 3D curve. Accordingly, the position vector
remains the same (see Equation 5.9). In addition, the ψ angle reference is fixed
to 0 rad. Figure 5.16 illustrates the results to a helical reference for the quadrotor
controller.

Figure 5.16: 3D Helix Trajectory Tracking Response of the Nonlinear Model for LQR

Moreover, from the figure, it is inherently clear that the developed controllers
are adept in trajectory tracking as well. Hence, theoretically speaking, it will be
safe to assume that when equipped with the LQR controller, the drone will have
the capability to trace a curve that defines its translational position movement.
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Testing

A picture of the quadrotor which was built for testing purposes is shown in
Figure 6.1. Due to its small size, finding the appropriate place for all electronic
components that would let the motors spin freely has been challenging. All PID
controllers for attitude and xyz-position were programmed in the MCU in accor-
dance with their respective loop frequencies. Sensors are proved to be working
as intended and it is made sure that they did not delay the stringent execution
period of the controller loops. The program is written in a way that the quadro-
tor flies autonomously without any intervention. A timer that sets the altitude
reference zd to zero after a predefined period of time made autonomous land-
ing possible. In case the attitude cannot be stabilized and the quadrotor poses
danger by accelerating in undesired directions, a safety function that initiates a
forced landing when the roll and pitch angles are above a certain threshold is
implemented.

Figure 6.1: The Quadrotor Developed As Part of the Project

For the purpose of testing, (xd, yd, zd) are set to (0.8, 0.8, 0.35m) respectively.
The yaw angle is also desired to converge to zero. Naturally, we initially utilized
the gains found in simulation, but on inspection, they were found to be too
aggressive and were consequently reduced. The graph presenting the result of
this experiment is shown in Figure 6.2. Videos of two successive experiments
(the first video corresponds to the data) with the mentioned references can be
watched by accessing https://bit.ly/2YZxmD7.
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Examining the Figure 6.2 and watching the test videos through the given
link, it can be seen that the aimed performance of fast and error-free reference
tracking as observed in the simulations was not achieved in real life. The data
rather hints a lower controller performance with respect to reference tracking
and time-domain specifications.

Altitude control seems to be the best among all. The quadrotor is able reach
the reference in less than 2 s, indicating a better performance than the simula-
tion. It maintains its height to a satisfactory level even when it is rolled and
pitched. We believe the manipulation of the measured z-distances with respect
to the Euler angles has a contribution in this achievement. Time to time, minor
overshoots and undershoots in height is observed which are thought to originate
due to partial loss of thrust in ẑG direction when the Euler angles are not zero.

The xy-position of the quadrotor reaches the reference rather fast and thus
results in an overshoot of approximately 0.4m. Even though the controller is
able to diminish the error in time, it is simply not fast enough. In order to ob-
tain a better xy-position tracking performance, new controller coefficients were
tested: integral gain was increased for faster error elimination and derivative
gain was increased to decrease the amount of overshoot. However, none of the
tests with the mentioned changes gave more promising results than what was
already achieved. They either did not alter the performance noteworthily or led
to the instability of the quadrotor.

Euler angles are also affected by the fact that there is an xy-position reference
error. In such a scenario, non-zero roll and pitch angle references are calculated
by the xy-position controllers. We notice that this leads φ and θ angles to rapidly
change around the reference line that marks the optimum level. Despite how
turbulent φ and θ seem, the fact that they are altering around desired level and
xy-position error is decreasing over time proves that they do work. As in the case
of xy-position control, no better performance was achieved by amending the PID
coefficients. We also pondered upon the possibility that the observed controller
performance may be due to the complementary filter and tried different cut-
off frequencies with the hope of obtaining better results. However, the overall
performance did not change positively.

ψ is controlled better compared to φ and θ, deviating only 3 degrees from
the reference. This is due to the fact that ψ is not affected by the xy-position
controllers. From the data, it is also seen that the controller performance is
adequate.

The large overshoot in xy-control stands as a proof of the practical PID
controller imperfection, although this unexpected behaviour may stem from
unknown causes. This has unfavourably led to the preclusion of the closed-
loop model validation process. Nonetheless, the overall testing results demon-
strated successful controller implementation that needs further modification to
approach the desired level of performance.
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Figure 6.2: xyz-Position and Attitude Control Test Results



Chapter 7

Discussion

Modeling Techniques

As mentioned from the very beginning of the report, the dynamic equations
of the quadrotor have been derived through the fairly straightforward Newton-
Euler method. Although this technique sufficed for the necessary mathematical
modeling, it would have been very beneficial, from a learning perspective, to de-
velop the underlying relationships with the Euler-Lagrange methodology. Apart
from this, literature seems to argue in favour of the quaternion formalism, which
circumvents the singularity issue known as gimbal lock arising when adopting
the rotation matrices. Thus, a study of quaternions is definitely worth pursu-
ing in the future, but a stronger mathematical skill set needs to be developed
beforehand.

In connection to the modeled forces and moments acting on the airframe,
it was argued in Section 3.6 that the aerodynamic complexities are not very
relevant in the context of this project, as compared to the thrust and body-frame
reaction torques. Nevertheless, more effort could have been directed towards
gaining a deeper understanding of the effects in question and identifying the
dynamics that are worth including in the model, for the purpose of increasing
the accuracy and the controller efficiency. Even more exactitude could have been
achieved by including the mathematical representations of the other components
of the propulsion model (encompassing models for ESC, motors and battery)
[65].

State Estimation

Even though we have not noticed any significant drift in the gyroscope-based
yaw angle estimation in our experiments, we anticipate that it would occur if we
were to let the drone fly for a longer period. Therefore, under such tests, a more
reliable yaw angle estimation could have been achieved if measurements from
the gyroscope and the magnetometer were complemented.

FB is considered to be zero while deriving the formulae to estimate pitch and
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roll angles from the accelerometer in Section 4.1. By doing so, we excluded the
effect of acceleration that we need in order to change quadrotor’s position in
3D space. Predicting these accelerations from the actuator inputs by also taking
the orientation of the drone into account and removing it from the measure-
ments prior to using it at every sampling iteration would enhance the overall
performance.

No mathematical approach has been taken to incorporate the sensor noise
level and distribution into the sensor fusion algorithm due to the project time-
frame and our lack of knowledge in statistics. We simply removed offsets from
the sensor measurements and considered that the noise average is zero. Imple-
menting a Kalman Filter, on the other hand, would bring a more mathematical
approach to the issue.

Making use of the OptiTrack MOCAP measurements available in the Drone
Lab of AAU by including them in the sensor fusion algorithm might be another
endeavour to increase signal-to-noise ratio and to obtain better state estimation.

The utilized 1D-LiDARs are very accurate in their measurements, but have a
working range of merely 1.2m. For this reason, we were compelled to place the
quadrotor close to the corner of the testing arena in the Drone Lab, while con-
ducting various experiments. In order to have a larger area in which trajectory
controller can be tested, better distance-measuring sensors need to be installed.

LQR Controller Implementation

It should be clearly stated that we are very interested in the branch of modern
control theory and had true intentions of testing the designed LQR controller on
the real system. The C/C++ program was actually written, but the implementa-
tion stage was never reached due to time constraints. The chief impediment was
represented by a 3 week delay in the ESC shipment, in mid-November. During
that specific time period, no practical progress was possible.



Chapter 8

Conclusion

This report presents a bottom-up approach on quadrotor attitude and position
stabilization. First, the conducted literature review allowed us to recognize the
state of the art in modeling, control, sensors and state estimation. In light of
prevailing techniques and technologies in these domains, and also by taking
our level of knowledge into account, the most suitable approaches that fulfil
the project’s scope were identified and explored. The Newton-Euler equations
were used to capture the UAV rigid-body dynamics, which led to the creation
of a nonlinear quadcopter model. On top of that, a linear representation at the
steady-state of hovering has also been deduced, with the end goal of its uti-
lization for controller design (LQR, in particular). A simple thrust mixing algo-
rithm was defined based on the relevant rotor dynamics, to link the computed
controller outputs with the hardware inputs. In continuation, the parameter
identification of unknown constants was a key stride towards the realization of
Simulink models that were subsequently employed in controller design. PID
and LQR compensators were tuned to obtain the best possible performance for
attitude, altitude and xy-position control, while their trajectory tracking capabil-
ities were additonally inspected with favourable results. From a data acquisition
standpoint, reliable Euler angle estimation from IMU data was rendered possi-
ble with the aid of complementary filter design, a rudimentary and yet effective
sensor fusion procedure. Thus, the disadvantages entailed by the individual use
of accelerometer and gyroscope were nullified. Moving on to the implementa-
tion, in the case of PID specifically, discretization effects have been accounted for
in simulation, in an attempt to represent the digital nature of the microcontroller.
Emphasis has also been placed on the construction of a quadcopter which served
its purpose as a plant for testing in an indoor environment. Through iterative
readjustment of the controller gains while observing the response of the real sys-
tem, an arguably satisfactory hovering stabilization was reached. Even though
the controller performance was not at the desired level, and further refinement
is undoubtedly required, the project is regarded as successful both in terms of
implementation and learning objectives.
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Appendix A

Vectors in Rotating Reference Frames

Consider the reference frames (and the associated three-dimensional coordinate
systems) I (inertial frame) with basis vectors î, ĵ and k̂, and B (non-inertial body
frame), with basis vectors î′, ĵ′ and k̂′. Let the two systems share the same origin
and let B rotate with respect to I at an angular rateω. A time-dependent vector
r can be expressed using the basis vectors of either frame, as follows:

rI = rx î + ry ĵ + rzk̂ rB = rx′ î
′ + ry′ ĵ

′ + rz′ k̂
′ (A.1)

There exists an orthogonal matrix R that essentially encodes the rotation of
the coordinate system B, and, when multiplied with rB gives rI . Thus, we have:

rI = RrB (A.2)

Because of the orthogonality of R, R−1 = RT and hence:

RRT = I3 ⇒ ṘRT + RṘT
= 0⇒ ṘRT = −RṘT

= −(ṘRT)T (A.3)

The result in Equation A.3 proves that the matrix RṘT is skew-symmetric.
Now, for convenience, let the two reference frames be initially superimposed.

If rB represents the position of a point P expressed in body coordinates, then
the velocity of the body with respect to the inertial frame and expressed in body
coordinates is vB and is obtained by differentiating rB with respect to the inertial
basis. Remembering that the basis vector in B are not constant with respect to I
carrying out the total differentiation yields:

vB =
drB
dt

∣∣∣∣
I
=

rx′

dt
î′ +

ry′

dt
ĵ′ +

rz′

dt
k̂′ + rx′

î′

dt
+ ry′

ĵ′

dt
+ rz′

k̂′

dt
(A.4)

The first term in the left-hand side is the derivative of the vector within
the body frame, while the second term describes the change of the body basis
vectors relative to the inertial basis vectors. The nature of this term is the one
of a tangential velocity emerging from the rotation and expressed as the vector
product of rB and ωB.
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vB =
drB
dt

∣∣∣∣
I
=

drB
dt

∣∣∣∣
B
+ωB × rB = ṙB +ωB × rB (A.5)

The preceding relation is the application of a general equation usually labeled
"the Coriolis’ theorem" in the literature and holds for any vector. Therefore, the
acceleration of the body relative to the inertial frame and expressed in body
coordinates is:

aB =
dvB
dt

∣∣∣∣
I
=

dvB
dt

∣∣∣∣
B
+ωB × vB = v̇B +ωB × vB (A.6)

Now, consider the vector rB changes in such a manner that its coordinates
in the body frame are constant in time, i.e., ṙB = 0. Then, from Equation A.2
and A.5, we have:

vI = RvB =
drB
dt

∣∣∣∣
I
= R(ωB × rB) (A.7)

Differentiating Equation A.2 in this case gives:

ṙI = vI = ṘrB (A.8)

The two preceding equations are equivalent, so we can write:

R(ωB × rB) = ṘrB ⇒ωB × rB = RTṘrB (A.9)

We conclude that

[ωB]× = [RTωI ]× = RT[ωI ]×R = RTṘ⇒ [ωI ]× = ṘRT (A.10)

and because we can write [ωI ]× as the following skew-symmetric matrix:

[ωI ]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (A.11)

it results that the matrix RṘT is also skew-symmetric, showing that Equa-
tions A.10 is indeed correct.

Notation for Derivatives

For complete clarity, the following notation has been adopted for this report:

drI
dt

∣∣∣∣
I
= ṙI = vI

is the speed of point P relative to the iner-
tial frame and expressed using the basis of
the inertial frame

(A.12)
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drB
dt

∣∣∣∣
I
= vB = RTvI

is the speed of point P relative to the iner-
tial frame and expressed using the basis of
the body frame

(A.13)

drI
dt

∣∣∣∣
B
= ṙBI = vBI

is the speed of point P relative to the body
frame and expressed using the basis of the
inertial frame

(A.14)

drB
dt

∣∣∣∣
B
= ṙB = vBB = RTvBI

is the speed of point P relative to the body
frame and expressed using the basis of the
body frame

(A.15)

The Newton-Euler equations (Section 3.5) hold true in inertial reference frames,
but can be written with respect to either basis vectors.

The preceding contents of Appendix A have been written based on [44, 76,
77].



Appendix B

Inertia Tensor

In general, we have that, for a rigid body rotating in three dimensions around
a certain point, "the angular momentum is related to the angular velocity by a
linear transformation" [45], as shown in Equation B.1:

Hx = Ixxωx + Ixyωy + Ixzωz

Hy = Iyxωx + Iyyωy + Iyzωz

Hz = Izxωx + Izyωy + Izzωz

(B.1)

which can be rewritten succinctly as:

H = Iω (B.2)

where H is the angular momentum about a certain point andω is the angular
velocity. We can therefore define the transformation matrix:

I =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (B.3)

where the diagonal elements are called the moment of inertia coefficients
and the off-diagonal elements are referred to as the products of inertia. We can
illustrate their general form by taking one example of each, as follows:

Ixx =
N

∑
i=1

mi(r2
i − x2

i ) Ixy = −
N

∑
i=1

mixiyi (B.4)

the relations being valid for an object comprised of N discrete particles, with
ri being the radius of the ith particle relative to the point in question. Notice that
the moment of inertia coefficients cannot be negative.

Equation B.2 indicates that I is a member of a different class than the vector
it acts upon (ω). It is actually defined as a more general quantity called a tensor
of the second rank (a tensor of the first rank is a vector) and can be represented
in matrix form. Thus, I is the inertia tensor.
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It is easy to see that Equation B.1 is greatly simplified if the inertia tensor has
a diagonal form, referred to as the principal moment of inertia tensor. Rotation
matrices affect the entries of I, and it can be proven that it is always possible
to bring the inertia tensor to a diagonal from by adequately choosing a rotation
that converts to a set of orthogonal principal axes. It is also known that a rigid
body has three principal axes and that an axis of symmetry is such a principal
axis. Since that is the case, we can say that, in the drone’s B-frame, if symmetry
with respect to the three body axes passing through the COM is assumed, the
inertia tensor is diagonal:

IB =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (B.5)

We can transform between the diagonal inertia tensor IB and its non-diagonal
counterpart II , i.e., the inertia tensor with respect to the axes of the inertial
coordinate system, using the rotation matrix R (rotating from the body frame to
the inertial frame):

HI = IIωI ⇒ RHB = IIRωB ⇒ HB = RTIIRωB (B.6)

leading to the similarity transformation:

IB = RTIIR (B.7)

The preceding contents of Appendix B have been written based on [45].

B.1 Moments of Inertia of a Solid Rectangular Cuboid
Body

From [78], we know that, for a three-dimensional solid body T representing a
bounded region is space, with a continuous density function ρ(x, y, z), the three
moments of inertia around the three coordinate axes can be calculated using the
formula in Equation B.8:

Ixx =
∫∫∫

T
ρ(x, y, z)(y2 + z2)dV

Iyy =
∫∫∫

T
ρ(x, y, z)(x2 + z2)dV

Izz =
∫∫∫

T
ρ(x, y, z)(x2 + y2)dV

(B.8)

For a rectangular cuboid body (Figure B.1) whose center of mass corresponds
to the origin of the coordinate system, with dimensions L, W and H, mass m and
constant density ρ(x, y, z) = m

LWH , the moments of inertia take, according to [58],
the form in Equation B.9:
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
Ixx = mW2+H2

12

Iyy = m L2+H2

12

Izz = m L2+W2

12

(B.9)
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Figure B.1: Rectangular Cuboid
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