
LiDAR-based 2D EKF SLAM for
Indoor Environments

Devrat Singh, Fikrican Ozgur,
Codrin-Matei Căciuleanu

Bachelor (BSc) in Electronics and Computer Engineering
Group ED6-1-F20

BSc Project (Automation and Control)

S
T

U

D
E

N
T R E P O R T

Copyright c© Aalborg University 2020

This document was typeset using Overleaf, an online LATEX editor. The simulations were per-
formed in Python 3.7.4. ROS Melodic Morenia was used for information flow among system
peripherals and Gazebo, running on Ubuntu 18.04, served as a simulation environment. The
figures were created in Matlab R2019b, Inkscape 0.92.4 and Python 3.7.4.

Faculty of Engineering and Science
Aalborg University

http://www.aau.dk

Title:
LiDAR-based 2D EKF SLAM for Indoor
Environments

Theme:
Automation and Control

Project Period:
Spring Semester 2019

Project Group:
ED6-1-F20

Participant(s):
Devrat Singh
Fikrican Ozgur
Codrin-Matei Căciuleanu

Supervisor(s):
Petar Durdevic Løhndorf
Daniel Ortiz-Arroyo

Copies: 1

Page Count: 101

Date of Completion:
June 4, 2020

Abstract:

The present thesis expands upon the fa-
mous online SLAM problem predomi-
nant in the field of robotics, with a fo-
cus on wheeled vehicles in indoor en-
vironments. The devised solution in-
cludes the use of a 2D LiDAR sensor
for perception of the surrounding. The
a priori pose estimate of the EKF is de-
termined by the velocity motion model.
Line features, extracted based on the
Split-and-Merge algorithm, are evalu-
ated for possible data associations on
the basis of their maximum likelihoods
and utilised to compute the a poste-
riori state estimate. The performance
of localization with midpoint enhance-
ment and SLAM algorithms, coded in
Python 3, are first assessed in a cus-
tom built test environment. Upon the
achievements of successful results, ef-
forts towards ROS-based SLAM simula-
tion using the Gazebo tool are put for-
ward. Ultimately, a real setup imple-
mentation has been precluded from hap-
pening. Nevertheless, the simulation re-
sults evince the success of the thesis.

The content of this report is freely available, but publication (with reference) may only be pursued due to agree-
ment with the authors.

http://www.aau.dk

Table of Contents

Preface xii

1 Introduction 1

2 State of the Art 9
2.1 LiDAR-based SLAM . 9
2.2 Visual SLAM . 11
2.3 Recent Trends in SLAM . 14

3 System Description 16

4 State Estimation 19
4.1 The Kalman Filter . 19

4.1.1 Kalman Filter Algorithm . 20
4.1.2 Kalman Filter Example . 23

4.2 Extended Kalman Filter . 24
4.2.1 Linearization . 24
4.2.2 Drawbacks of EKF . 26
4.2.3 EKF Alternatives . 28

5 Modeling 29
5.1 Motion Model . 29
5.2 Measurement Model . 31

5.2.1 Feature-Based Observation Model for Point Landmarks 32
5.2.2 Feature-Based Observation Model for Line Landmarks 33

5.3 Extraction of Line Features . 35
5.3.1 Segmentation . 35
5.3.2 Line Model Parameter Estimation 37
5.3.3 Line Feature Covariance Estimation 38
5.3.4 Split-and-Merge Implementation with LiDAR 41
5.3.5 LiDAR Noise Distribution . 41

5.4 The Data Association Problem . 42

iv

Table of Contents v

6 Localization 44
6.1 Definition of the Localization Problem . 44
6.2 Mathematical Derivation . 45
6.3 Data Association . 48

6.3.1 Maximum Likelihood Association 48
6.3.2 Validation Gating . 49
6.3.3 Correspondence Enhancement for Line Features 51

6.4 EKF Localization Algorithm . 53
6.5 Simulation of EKF Localization . 53

6.5.1 Simulation Setup . 55
6.5.2 Simulation Results . 58

7 Simultaneous Localization and Mapping 62
7.1 Definition of the SLAM Problem . 62
7.2 Mathematical Derivation . 62
7.3 Landmark Initialization . 68
7.4 Data Association . 70

7.4.1 Tentative Landmark List . 70
7.4.2 Correspondence Enhancement for Line Features 72

7.5 EKF SLAM Algorithm . 73
7.6 Simulation of EKF SLAM . 74

7.6.1 Localization Performance . 75
7.6.2 Mapping Performance . 76

8 ROS Implementation 80

9 Discussion 87

10 Conclusion 91

Bibliography 93

A Line Landmarks 98
A.1 Derivation of the Sensor Model . 98
A.2 Line Segment Extraction for Landmark Visualization Purposes 99

B Maximum Likelihood Association 100

C SLAM Covariance Augmentation 101

List of Figures

1.1 Left: Pose-graph from visual odometry (red) with the loop-closures
(green); Right: Final result after pose-graph optimization (Copyright
c© 2014, IEEE) . 2

1.2 Left: Odometry based map; Right: Map built with SLAM 3
1.3 Visual illustration of the SLAM problem 5
1.4 Correct data association difficulty due to large pose estimate uncertainty 5
1.5 Self-driving car Stanley is competing in 2005 DARPA Grand challenge . 8

2.1 Left: Mesh reconstructed from LiDAR; Right: Photo taken some days
after the capture (Copyright c© 2018, IEEE) 10

2.2 Left: The extracted points and lines are displayed on each frame; Right:
The map is built by SLAM which shows the trajectory with extracted
points and lines. (Copyright c© 2018, IEEE) 12

2.3 3D reconstruction obtained in real time by LSD SLAM with omnidirec-
tional cameras (Copyright c© 2015, IEEE) 12

2.4 Optimized RGB-D 3D model (Copyright c© 2012, IEEE) 13
2.5 An example of SURF feature points matching (Copyright c© 2019, IEEE) 14

3.1 High-level system description . 16
3.2 Simplified block diagram of the overall system 17

4.1 Kalman Filter block diagram . 21
4.2 Kalman Filter example . 23
4.3 Extended Kalman filter algorithm in flow chart form 26
4.4 Plot illustrating the effect of linearization point in obtaining accurate

posterior approximations . 27
4.5 Plot illustrating the effect of having a small uncertainty in obtaining

accurate posterior approximations . 27
4.6 Mean and covariance propagation of actual, EKF and UKF transforma-

tions . 28

5.1 Left: Pose of the robot within the global reference frame; Right: Cir-
cular motion in the velocity model (this particular depiction assumes
negligible state uncertainty) . 30

vi

List of Figures vii

5.2 Illustration of the robot’s onboard sensor measuring the relative posi-
tion of a point landmark . 33

5.3 Illustration of the robot’s onboard sensor measuring the relative posi-
tion of a line landmark. Left: pG ∩ lj = ∅; Right: pG ∩ lj 6= ∅ (see the
pink point) . 34

5.4 Illustration of Split-and-Merge, the Iterative-End-Point-Fitting version.
Splitting stage is done in a), b) and c). In d), collinear segments are
merged . 36

5.5 Illustration of total least-squares line fitting to a cluster of points in the
context of line extraction . 37

5.6 Illustration of error propagation for total-least-squares line fitting 39
5.7 Split-and-Merge algorithm implementation in a test area. Left: Raw

LiDAR points from the test area. Right: Point Clusters Converted to
Points . 42

5.8 Histograms and probability density functions of the LiDAR measure-
ments with mean value subtracted . 43

6.1 Graphical model of the localization problem 44
6.2 Left: Graphical representation of the validation gate; Right: Ambiguity

in data association . 50
6.3 Plot of the PDF of a χ2-distribution with 2 degrees of freedom 50
6.4 Illustration of the matching ambiguity arising due to landmark collinear-

ity. An enhancement consists of utilizing the midpoint of the features
and landmarks for data association . 52

6.5 A Snapshot of The 2D Simulation Test Bench Environment Showing
The Trajectory of The Robot With The Extracted Features And Acquired
Correspondences . 55

6.6 Point landmark map of the custom built environment 58
6.7 True, estimated and noise-free trajectories resulted from the localization

simulation . 59
6.8 Absolute error between EKF and true trajectories and the covariance

bound during the localization simulation 59
6.9 Absolute error between the true and ideal trajectories during the local-

ization simulation . 60
6.10 Position and pose uncertainty history resulted from the localization

simulation . 60
6.11 Left: Number of correct and wrong correspondences for the detected

features with midpoint data association enhancement; Right: Without
midpoint data association enhancement 61

7.1 Graphical model of the online SLAM problem 63
7.2 State mean and state covariance in EKF SLAM 64
7.3 State mean and state covariance after landmark initialization 70

viii List of Figures

7.4 True, estimated and noise-free trajectories resulted from the SLAM sim-
ulation . 75

7.5 Absolute error and covariance bound during SLAM simulation 76
7.6 Absolute error between the true and ideal trajectories during the SLAM

simulation . 76
7.7 Evolution of the determinants of landmark variances 77
7.8 Cartesian coordinates of the estimated and true landmarks 78
7.9 Position and pose uncertainty history, along with the true and final

estimated line landmarks . 78

8.1 TurtleBot3 Burger model inside Gazebo environment 83
8.2 Gazebo structure with the TurtleBot inside it 83
8.3 ROS graph structure for Gazebo implementation 84

A.1 Illustration of the robot’s onboard sensor measuring the relative posi-
tion of a line landmark. Left: lp ∩ lj = ∅; Right: lp ∩ lj 6= ∅ 98

Nomenclature

Generic
·−1 Matrix inverse
·> Matrix transpose
·1:t, Indication of all the past and present values of a variable
·mid Indication that a function or variable is related to the midpoint of a line

landmark
·t−1, ·t, ·t+1 Indication of past, present and future values of a variable
∆t Time step
RN The N-dimensional real number set
∅ The empty set
I, 0 Identity matrix and zero matrix for which dimensions are either evi-

dent or changing based on the circumstances
IN×N, 0N×N The N × N identity matrix and the N × N zero matrix
h, i, j, k Indices used for counting
State Estimation. Robot and Environment-Related Parameters
α1, . . . , α6 Robot-specific error parameters utilized for modeling the process noise
v̂t, ω̂t, γ̂t Noisy translational velocity, angular velocity and a noisy signal affect-

ing the final heading
κ Intersection flag
x̂B, ŷB Unit vectors of the body (local) reference frame
x̂G , ŷG Unit vectors of the global reference frame
µt,µt A priori and a posteriori state vector mean
Σt, Σt A priori and a posteriori state covariance matrix
εt,δt Process and observation noise vectors
At, Bt, Ct State-transition, input and observation matrices for a linear state space
g, h State-transition and observation vector functions for a nonlinear state

space
Gt, Lt, Ht Jacobians of g w.r.t. xt and εt and the Jacobian of h w.r.t. xt, all evalu-

ated at the mean
Kt Optimal Kalman gain
m, mk The feature map of the environment and the k-th landmark
pG Global position vector for the robot
Qt, Rt Process and observation noise covariance matrices
St Innovation Covariance Matrix

ix

x Nomenclature

ut Control vector
xt Pose vector and state vector in localization
zi

t, ẑk
t Sensor measurement of the i-th feature and expected measurement of

the i-th feature computed from the k-th landmark
rk, ψk Polar coordinates of the k-th line landmark
vt, ωt Translational and angular robot’s velocities
xc, yc, rc Coordinates of the center of the robot’s circular trajectory and its radius
xk, yk Cartesian coordinates of the k-th point landmark
xt, yt, θt Robot’s position and heading in the global frame
Feature Extraction
L List of extracted features
Si, li The i-th point segment/cluster and the corresponding line feature
xi, yi Sensor-frame Cartesian coordinates of the midpoint of the i-th line fea-

ture
ρi

t, αi
t Polar coordinates of the i-th line feature in the sensor space

Ai
h,Bi

h Jacobian matrices of v and u w.r.t. to the h-th point in the i-th segment
C i

h,Di
h Covariance matrices of the Cartesian and polar coordinates for the h-th

point in the i-th segment
F (·) Feature extractor function
u Function of polar coordinates of a measured point giving its Cartesian

coordinates
v Function of Cartesian coordinates of points in a segment giving the line

feature parameters associated with the segment
zi

t,F i
t The i-th extracted feature

dk, φk Sensor-frame polar coordinates of the k-th point acquired by the sensor
E Squared sum of distances from all points in the i-th segment to the i-th

line feature
M, Z, N Number of data points acquired by the sensor, number of extracted

features, number of landmarks
ni Number points in the i-th segment
ri

t, ϕi
t, si

t Polar coordinates of the i-th point feature in the sensor space and its
signature

Si
x2 , Si

y2 , Si
xy Intermediate variables needed in finding the optimal line feature pa-

rameters
Data Association
γ1 Validation gate threshold
ĉi

t, j(i) Maximum likelihood correspondence index for the i-th feature and the
j-th landmark

ct, ci
t Correspondence vector and correspondence variable for feature i

Ak Valid association area for the k-th landmark
Dik Normalized distance between feature i and landmark k
Mik Squared Mahalanobis distance between feature i and landmark k
Sw,ik Weighted sum of the distances between feature i and landmark k (when

Nomenclature xi

the midpoint is included)
SLAM
·tent Indication that a variable is related to a tentative landmark
Λt, Λt,j Sparse matrices required in inefficient SLAM implementation
µt,x,µt,m A posteriori mean of the pose and map vectors
ΣN+1,N+1, Σt,N+1,all Covariance matrices of the new landmark with itself and the new

landmark with the pose and all other landmarks
Σt,mx, Σt,mm A posteriori covariance matrices of the map with the pose and the map

with itself
Σt,mimj A posteriori covariance matrix of the i-th landmark with the j-th land-

mark
Σt,xx, Σt,xm A posteriori covariance matrices of the pose with itself and the pose

with the map
f Inverse observation vector function
Ft,x, Ft,w Inverse observation model Jacobian wrt the pose vector and with re-

spect to wt
Gt,low Low-dimensional matrix used in the computation of the Jacobian Gt
Gt,x Motion model Jacobian wrt the pose vector
Ht,x, Ht,m Observation model Jacobian wrt the pose vector and with respect to a

certain landmark
Lt,x Motion model Jacobian wrt the process noise in the pose vector
mN+1,µN+1 New landmark vector and its estimated position
wt Random variable with mean at the value of the current measurement
yt State vector in SLAM
A, a, Ak, ak Maximum allowed number of iterations for the existence of a tenta-

tive landmark, the number of associations needed for the creation of a
permanent landmark and the associated counters for the k-th landmark

P Number of tentative landmarks
Probability
χ2(·) Chi-squared distribution
N (·) Normal Distribution
σ· Variance of a one-dimensional continuous random variable
p(· | ·) Conditional probability density function
p(·) Probability density function of a continuous random variable

Preface

Acknowledgements

We would like to express our gratitude to the people without whom this thesis and
our Bachelor’s journey would not have been possible. We thank our supervisors: Dr.
Petar Durdevic Løhndorf and Dr. Daniel Ortiz-Arroyo, whose insight and knowledge
into the subject matter steered us through this project as well as encouraged us to
explore ideas of our own. Our most sincere respect and thanks to all our previous
supervisors who have guided us in our work in the last 3 years. Each of you have
furnished us with your precious time, energy, and expertise and we are richer for it:
Dr. Dil Muhammad Akbar Hussain and Dr. Amin Hajizadeh.

Finally, our journeys to this point would not have been possible without the un-
conditional support of our families. To our respective parents, who have always held
their unyielding trust in us to make our own path. You are the ultimate role models
and thank you for all the support that you have shown us.

xii

Preface xiii

The Bachelor’s thesis entitled "LiDAR-based 2D EKF SLAM for Indoor Environ-
ments" was written by three students pursuing the Bachelor (BSc) in Electronics and
Computer Engineering at Aalborg University Esbjerg. Hereafter, every mention of
"we" refers to the three co-authors listed below.

Aalborg University, June 4, 2020

Devrat Singh
<dsingh17@student.aau.dk>

Fikrican Ozgur
<fyozgy17@student.aau.dk>

Codrin-Matei Căciuleanu
<ccaciu17@student.aau.dk>

xiv Preface

To Devika

To İmren and Enes

To Mia and Călin

Preface xv

It’s sad that we never get trained to leave
assumptions behind.

Sebastian Thrun

Chapter 1

Introduction

In broad terms, the SLAM (Simultaneous Localization and Mapping) problem in-
cludes concurrent state estimation of an agent1 by means of on-board sensors and

the creation of a model representing interesting facets of the environment in which
the robot performs. The problem emerges in the absence of both a map of the envi-
ronment and knowledge of robot states. Thus, it comprises two strongly connected
robotic problems: localization and mapping. When individually investigated, the
former assumes a complete map and tries to estimate robot’s pose (position and ori-
entation) whereas the latter presumes known robot pose and constructs a map. On the
other hand, SLAM algorithms tackle both localization and mapping simultaneously
and constitute a significantly more difficult chicken-and-egg problem. Nevertheless,
being a crucial technology enabling mobile robot navigation, SLAM is considered a
principal problem for fully autonomous robotics applications [1].

What makes SLAM unique?

Before diving into the specifics of the SLAM problem, we would like to take a step
back and discuss what renders it special. The answer to the question What makes
SLAM unique? is the loop closure, which means nullifying the accumulated drift in
the robot trajectory over time by making use of additional information obtained by
revisiting a location [2]. Figure 1.1 illustrates the effect of loop closure in accurate state
estimation by showing the significant improvement it brings to the pose estimation. Its
place in autonomous robotics is unmitigated since it enhances the overall performance
with its estimate correction. If loop closure is excluded, SLAM reduces to odometry,
which is the robot pose estimation method that is implemented by integrating the
output of the wheel encoders [3]. However, odometry-based pose estimation is not
accurate at all after a few meters due to its drift [4]. This lack of certainty is indeed
what has actually kick-started the research on the idea of reducing drift by means of
landmark observations in the late 20th century [3, 5].

1In the context of this thesis, it will also be referred to as a robot.

1

2 Chapter 1. Introduction

Figure 1.1: Left: Pose-graph from visual odometry (red) with the loop-closures (green); Right: Final
result after pose-graph optimization (Copyright c© 2014, IEEE)

History of SLAM

The period from 1984 to 2004, which marks the early days of SLAM research, is re-
ferred to as the classical age. In this epoch, the main probabilistic SLAM approaches
such as Extended Kalman Filter (EKF), Rao-Blackwellised Particle Filters (RBPF) and
maximum likelihood estimation were introduced. Moreover, challenges in efficiency
and data association were outlined. The results obtained during the classical age have
been succinctly reviewed in [6] by Durrant-Whyte and Bailey. A more detailed de-
scription of classical age SLAM algorithms can be found in the Probabilistic Robotics
book [7] written by Thrun, Burgard, and Fox, which also constitutes the primary ref-
erence for this thesis. Subsequently, the algorithmic analysis age between 2004 and 2015
has witnessed the study of certain SLAM properties such as convergence, observ-
ability and consistency. Furthermore, open-source SLAM libraries were released and
the positive effect of sparse sensing in the SLAM algorithm efficiency has been better
understood [3].

This period of continuous research on SLAM has led to various technological de-
velopments, including visual and inertial odometry. These more recent odometry
algorithms produce smaller drift compared to conventional encoder-based odometry.
Their drift is equal or smaller than 0.5% the trajectory length [8]. Considering this
acceptable minor drift, the question Is SLAM really needed anymore? becomes valid
and there are a couple of strong arguments to it.

Is SLAM really needed?

First of all, the state-of-the-art visual-inertial odometry algorithms such as [9] and [10]
are the fruits of extensive research done to solve the SLAM problem over the last 10
years. For instance, VIN (Visual-Inertial Navigation) is regarded as a reduced SLAM
algorithm where loop closure is not implemented. Its development is mainly thanks
to the fact that more efforts towards developing sensor fusion algorithms with low-
quality sensors are put together in contrast to what has been formerly considered in
the literature.

A second notable benefit of SLAM algorithms is that they are able to construct
the correct topology of the environment with the help of loop closure. Performing

3

odometry alone builds an "infinite corridor" world model where place recognition
does not occur [3]. Figure 1.2 shows two separate maps of the same environment
constructed with and without the loop closure feature. Apart from interpreting the
topology inexactly and building a faulty map, the absence of loop closure also renders
the implementation of efficient navigation techniques almost impossible. For instance,
when revisited places are not recognised as in Figure 1.2-left, locations B and C on
the map will be thought of as being far away, whereas they are actually next to each
other as in Figure 1.2-right.

One counter argument to it could be that place recognition alone is also able to
interpret the right topology of the environment. Nonetheless, SLAM’s metric informa-
tion of the environment brings robustness and efficiency to the problem by preventing
false data association (perceptual aliasing) where two identical looking places are ob-
served at separate locations. In this regard, SLAM is superior to place recognition
with its ability to predict and validate its measurements [3].

A

B C

A

B C

Figure 1.2: Left: Odometry based map; Right: Map built with SLAM

Is SLAM a solved problem?

Having already discussed the uniqueness and neediness of SLAM technology, a nat-
ural question that comes to our mind is Is SLAM a solved problem?. The answer is
two-fold: yes and no, because the question as it is posed at the moment is too broad
and needs further details, regarding environment, robot, performance and so forth,
to be answered [11]. For instance, if the question is asked for 2D mapping of an in-
door environment via a robot with a laser scanner and wheel encoders on-board, the
answer is definitely a yes. Kuka Navigation Solution [12] is one of many solutions
to the SLAM problem in the given context with sufficient efficiency and robustness,
enabling it to autonomously perform in various industrial environments. Likewise,
vision-based SLAM for robots with slow dynamics, like Mars rovers [13], and visual-
inertial odometry [14], are well-studied research topics.

On the other side, the present SLAM algorithms fail or perform worse when ex-
posed to fast robot dynamics or executed in very dynamic environments. Therefore,
the research on SLAM problem still continues today and the era we are in now is re-
ferred to as robust perception age in [3]. It challenges researchers all around the world
to better address the following four aspects of the SLAM problem [3]: robust perfor-
mance, high level understanding, resource awareness and task-driven perception.

4 Chapter 1. Introduction

In essence, there are still open challenges with regards to the SLAM problem that
comprise multifarious aspects at the intersection of numerous research fields. At the
front-end level, which includes feature extraction and data association, signal pro-
cessing and computer vision techniques are intensively involved. The back-end level
where map estimation occurs is a mix of geometry, optimization and probabilistic
state estimation methods. A review of state-of-the-art techniques will be given in
Chapter 2.

Why is SLAM a hard problem?

Having already obtained a historical background on SLAM and its research, now we
would like to continue our discussion with a focus more on the problem itself. In this
section, we elucidate on what makes SLAM a hard problem.

The difficulty of the problem stems from the fact that the estimates of the path and
the map posteriors are both unknown and correlated [15]. Figure 1.3 is a fine example
to explain this chicken-and-egg nature of the problem and its complications. When
the robot first starts its operation, it assumes to be located at the origin of the global
frame with zero heading angle. Since it has not moved yet, it is completely certain as
to where it is. Thus, no uncertainty ellipse has been drawn around it. However, this
is not the case for landmark locations because the sensor measurements come with a
certain level of noise and this leads to uncertainty about their true locations. Then, the
robot moves to another location in the map. Even though its movement is measured
or the given motion command is known, it is hard to pinpoint where it exactly is due
to imperfect execution of the motion. For this reason, the robot’s pose now has uncer-
tainty. As the motion has increased the uncertainty of the system, currently measured
landmarks will have a larger uncertainty than the previously measured ones despite
the fact that the sensor noise is left unchanged. Next time the robot moves forward,
it re-observes a landmark and obtains a better estimate of its location thanks to addi-
tional information from re-observed landmark. Consequently, the uncertainty ellipse
of landmark L4 shrinks. Now that the robot is more certain about the location of
landmark four, it also gets more certain about its previous poses since the map and
the pose estimates are correlated. This leads to better location and map estimates.
Given the dependencies between the map and the poses, the mapping and localiza-
tion problem cannot be solved separately. Ergo, the solution (and the difficulty of it)
is to simultaneously tackle both problems.

The second reason why SLAM is a hard problem is the unknown data associa-
tion. It involves identification of sensed features to formerly observed landmarks in
the map. In the example of Figure 1.3, the position correction of L4 depended not
only on re-observing it, but also on making the correct data association. If there were
more landmarks in the neighbouring region of landmark four, a wrong data associ-
ation could have been done and this would have led to divergence in the estimation
process. Furthermore, the uncertainty of the pose estimate may also affect data as-
sociation adversely [15]. As illustrated in Figure 1.4, given that the robot observes

5

L1

L2

L3

L4

L5

L6

LX = LandmarkX

Figure 1.3: Visual illustration of the SLAM problem

two landmarks and it is equally likely to be at positions 1 and 2, correct data asso-
ciation becomes even harder. In continuation of our discussion on SLAM, a short
introduction to the main three SLAM paradigms is given in the next section.

L2

L1 L3

1 2µt

Figure 1.4: Correct data association difficulty due to large pose estimate uncertainty

SLAM Paradigms

There are fundamentally three SLAM paradigms: Extended Kalman Filters (EKF),
Graph-based optimization techniques and Particle methods, from which other for-
mulations have derived [6]. EKF SLAM estimates the robot and landmark locations
through a single state vector and the corresponding covariance matrix. It builds a
metrical and feature-based model of the environment. In Graph-based SLAM, the
landmarks and the robot position are thought of as nodes in a graph. Successive
location pairs are connected together with an arc according to the odometry data.
Other ties among locations and landmarks are also drawn when they are observed.
The connections in Graph-based SLAM represent soft constraints. The map and the
robot’s trajectory are best estimated by relaxing these constraints. Graphical SLAM

6 Chapter 1. Introduction

techniques are better than EKF in the sense that they can model larger environments
since they are not limited by the covariance matrix whose memory and update time
expands quadratically with the number of landmarks. In Particle filters, posteriors
are represented by sampled particles from the distribution. It is a recently popu-
larised non-parametric representation that can easily capture multimodal distribu-
tions. However, it suffers from scaling exponentially with the state space of the robot
and the map. Having briefly touched upon the main three SLAM paradigms, now we
would like to inform the reader about various SLAM classifications and explain their
characteristics [16].

Rich taxonomy of the SLAM problem

In the literature, there exist two distinguishable forms of the problem that are equally
important: full and online SLAM. The most notable difference between the two is
that the full SLAM computes the posterior of the complete robot path, whereas online
SLAM only involves current pose estimation. Recovering a map of the environment
is a common target for both. Full SLAM algorithms are classified as batch, referring
to processing of all data at the same time. This points out to gathering of sensor
information in advance, and then constructing the map and estimating the path of
the robot in it. On the other hand, online SLAM algorithms are generally incremental
(called filters) and deal with the most recent data iteratively at fixed intervals [16].

Solving either problem requires two mathematical models: a motion model and
a measurement model for state and map estimation respectively. Even though de-
terministic approaches are available, these models are usually probabilistic. In fact,
nearly all state-of-the-art SLAM algorithms implement probabilistic motion and sen-
sor models due to indisputable noisy nature of executed motion commands and sen-
sor measurements. Acknowledging the presence and effect of noise and incorporating
it into the SLAM algorithms has proven its efficiency and is now being considered as
the sole approach to the problem [17].

It is also possible to categorize the SLAM problem across various dimensions be-
sides the already mentioned full versus online distinction. Volumetric SLAM en-
ables a photo-realistic high-resolution representation of the environment, in contrast
to featured-based SLAM, where only certain features are mapped. One needs to
consider available processing power on-board while deciding between the two, since
volumetric SLAM involves more computations due to the increased dimensionality of
the map. For this reason, featured-based SLAM algorithms are usually more efficient.
However, their efficiency also comes with a drawback, that is the loss of information
from the sensor measurements [15].

Another assumption that differentiates SLAM algorithms is the static nature of the
environment, which is the default supposition of the vast majority of the literature.
While dynamic methods permit changes in the environment, static techniques con-
siders such changes as measurement outliers. In addition, the SLAM literature has
mainly been focused on single robot applications. SLAM techniques defined for a

7

swarm of robots are also gaining more popularity among the researchers [18].
Lastly, in passive SLAM, which constitutes the wide majority of all algorithms,

the robot is navigated arbitrarily by another entity and the SLAM algorithm is solely
responsible for state and map estimation. Its disadvantage is that the random motion
control of the robot usually leads to a longer operation time needed for accurate lo-
calization and mapping. On the contrary, active SLAM algorithms yield results faster
as they execute purposeful motion commands that help the robot explore the envi-
ronment in a shorter span of time [19]. Hybrid techniques that control the pointing
direction of on-board sensors and thus address the robot motion constraint of active
SLAM algorithms also exit [3].

Final Remarks and Our Motivation

With the tremendous advancement it has seen over the course of a couple of decades,
the SLAM problem has been better understood and addressed, meanwhile giving
birth to many other technologies such as visual-inertial odometry. Even though
some SLAM problems with certain environment-robot-performance configurations
have been mostly solved, there are still many other challenges that the researchers are
now working on to enhance the robustness, efficiency and autonomy of the current
systems.

SLAM is a fundamental topic in the field of robotics, as it renders robot opera-
tion possible in the absence of a localization infrastructure. The demand for such a
technology is indeed high, for it is at the core of a large range of indoor (augmented,
virtual reality and vacuum cleaners), outdoor (self-driving cars, lawn mower), aerial
(surveillance, inspection), underwater (reef monitoring), underground (mine explo-
rations) and space (terrain mapping for localization) applications [15]. One of the first
instances of SLAM applications that have gained great momentum to the ongoing
research in the field has been Stanley, the autonomous self-driving car (see Figure 1.5)
developed by Sebastian Thrun and the Stanford Racing Team for the 2005 DARPA
Grand challenge. The aforementioned SLAM applications are recent and foreshadow
integration of more advanced robotic applications into our everyday lives. In the
future, we are motivated to be a part of their realization. Thus, we chose to study
the SLAM problem for our Bachelor’s thesis and learn as much theory as possible
and develop practical skills needed for complete system integration, establishing the
foundations we need to contribute to the field in our future careers.

Over the years, researchers have developed numerous specific solutions to the
SLAM problem, but, as of now, there is not a single SLAM algorithm that works well
in all environmental conditions. It might be that a new perspective on the problem
is needed to address this wide range, or the little research improvements being accu-
mulated over the time will take us there. Regardless of how it happens, it is still true
that learning the classical SLAM techniques is relevant and necessary in our journey
towards learning more advanced methods, just like it is essential and important to
know the Newton’s law of universal gravitation to understand Albert Einstein’s gen-

8 Chapter 1. Introduction

eral theory of relativity. Therefore, we feel strongly motivated to take our first steps
in this thesis. We believe that the effort and hard work we put in it will pave the way
for us towards more advanced SLAM algorithms and even maybe beyond those, as
we move up our career ladders.

Figure 1.5: Self-driving car Stanley is competing in 2005 DARPA Grand challenge

Thesis Organization

This report pursues the following structure. In Chapter 1, an extensive introduction
to SLAM problem is given and our motivation to work on this topic is expressed.
Chapter 2 provides a review of the state-of-the-art SLAM techniques and the use of
recent sensor technologies and learning methods. Chapter 3 gives a system overview
and lists the components used in this thesis. Chapter 4 elucidates on the famous
Kalman filter state estimation method in mathematical terms and explains the imple-
mented extended version of it. Chapter 5 discusses the modeling of the robot motion
and the sensor measurements, as well as the extraction of features from raw sensor
data. Chapters 6 and 7 give the EKF (Extended Kalman Filter) localization and SLAM
algorithms in detail together with the corresponding simulation results. Chapter 8
presents the ROS implementation in relation to simulations with Gazebo. Finally,
Chapters 9 and 10 conclude the thesis with a brief discussion of supplemental topics,
followed by the conclusion.

Chapter 2

State of the Art

Numerous types of sensors including but not limited to encoder, laser range scan-
ner (also referred to as LiDAR), inertial measurement unit, GPS, RADAR and

camera have been leveraged for SLAM applications over the last 35 years of its his-
tory. LiDAR was the main sensor used in the early days of SLAM research [20].
However, nowadays the trend is either to use a camera or to fuse it with a depth sen-
sor because of its ease of configuration, low price, large measurement range and its
ability to gather substantial amount of information [21, 22, 23]. Nevertheless, SLAM
performed with laser scanners is still a popular choice due to its simplicity and accu-
racy [22]. In addition, point clouds delivered by laser scanning are easily interpreted
to execute SLAM algorithms. Considering this, a literature review regarding various
aspects of trending SLAM algorithms with a focus on laser range finders and cameras
has been conducted with the aim of gaining insight into the most recent techniques
used widely. The section is divided into two subcategories: LiDAR-based and visual
SLAM, where corresponding state of the art techniques involved in solving the SLAM
problem are mentioned.

2.1 LiDAR-based SLAM

LiDAR-based algorithms work depending on the point clouds obtained in the envi-
ronment, see Figure 2.1 for a map built with a laser range scanner. In spite of the
fact that LiDAR-based SLAM applications are broad, the methods used for it have
remained the same for the last ten years [22]. Two most prevalent approaches are
particle and optimization-based graph techniques [20].

Particle Filters

The benefit of particle filter approaches such as the ones in [24, 25] is that they can
deliver accurate positioning and mapping even for strongly nonlinear systems, un-
like EKF. On the other hand, a large number of particles correspond to an increased
amount of calculations to be performed. Gmapping (refer to [24]) based upon the

9

10 Chapter 2. State of the Art

Figure 2.1: Left: Mesh reconstructed from LiDAR; Right: Photo taken some days after the capture
(Copyright c© 2018, IEEE)

Rao-Blackwellized particle filter (RBPF) applies adaptive re-sampling and lowers the
computational complexity. Work presented in [26] achieves high accuracy 2D SLAM
with particle filter using one order of magnitude less particles than conventional ap-
proaches. A more famous work of particle filter based SLAM is FastSLAM, where the
robot’s trajectory and the data associations are represented as samples for the particle
filter [27, 28].

Optimization-based Techniques

These days, optimization-based approaches serve as effective alternatives to proba-
bilistic methods. Different optimization techniques such as the Levenberg–Marquardt
optimizer are applied to pose graphs where nodes and edges respectively represent
sensor measurements and constraints from the observations. Karto-SLAM [25], Hec-
tor SLAM [29] and Google’s Cartographer [30] are prevalent examples of such tech-
niques [20].

Motion Modeling

State of the art SLAM algorithms prefer utilising simple probabilistic kinematics to
model the motion of a robot. In spite of the fact that more advanced kinematic models
also exit, it is decided not to include them in this review, considering the higher
success and prevalence of the aforementioned simpler ones [31].

The two most common motion models are velocity and odometry models [31, 32].
The former takes commanded translational and rotational velocities into consideration
to calculate the pose of the robot. On the other hand, odometry models make use of
measured wheel revolutions. Even though both types of models process the same sort
of information, the results of odometry model are more accurate given that robots

2.2. Visual SLAM 11

cannot execute the given velocity commands with the same accuracy that encoders
can measure wheel revolution. Though, one drawback of odometry models is that
encoder information is available only after executing the command which hinders
implementation of motion planning and restricts their use mostly to state estimation
[7]. Nevertheless, most wheeled robots make use of odometry model. Velocity models
are typically used for flying vehicles as they are not usually equipped with encoders.
They are also common for humanoids or legged robots, even though they usually
have encoders in their joints because it is hard to estimate how big their step size is
[31].

Measurement Modeling

One efficient and simple measurement model, thus widely used, is the so-called beam-
endpoint model. It ignores the map information along the measurement line and
only takes the end point of the beam into consideration. It calculates the distance
to the nearest obstacle in the map. If there is no obstacle in close proximity, the
measurement will have low a likelihood. Beam-endpoint model lacks a plausible
physical explanation, since there might actually be an object closer than the measured
distance. On the other side, it performs better in cluttered environments and it is
computationally more efficient [33, 32].

An expensive to compute but still frequently used measurement model is called
the ray-cast model. Compared to the beam-endpoint model, it has a plausible physical
explanation but its disadvantage is its computational complexity. It suffers from lack
of smoothness in cluttered environments, meaning that neighbouring states might
have very different likelihoods [31].

There are also feature-based measurement models that reduce the high-dimensional
measurement space to a low-dimensional feature space and decrease computational
complexity. This type of measurement models require preprocessing of the raw sen-
sor data with appropriate algorithms for extracting the features. The likelihood of
measuring a landmark at a location is then calculated with basic geometry [33].

2.2 Visual SLAM

Visual SLAM (vSLAM) algorithms are classified as feature-based, direct and RGB-D
camera-based approaches [21]. As compared to feature-based systems, direct methods
use complete images without extracting any features from them. They register 1

successive images using photometric consistency instead of geometric positions of the
detected features. This enables direct methods to cope with featureless or textureless
environments.

1Image registration is the process of transforming multiple images into one coordinate system.

12 Chapter 2. State of the Art

Feature-based approaches

The most recent feature-based algorithm is ORB-SLAM [34, 35]. It can be imple-
mented using monocular, stereo and RGB-D cameras. Its biggest disadvantage is the
large number of parameters to be tuned to make it functional [22]. Works such as
[36] have been carried out to eliminate the need of parameter tuning in order to make
it robot and environment independent. However, the performance of ORB-SLAM is
still not reached by these approaches. Figure 2.2 illustrates an example of the feature
extraction process and the built map for a feature-based vSLAM algorithm.

Figure 2.2: Left: The extracted points and lines are displayed on each frame; Right: The map is built by
SLAM which shows the trajectory with extracted points and lines. (Copyright c© 2018, IEEE)

Direct Methods

State of the art direct methods are DTAM (Dense Tracking and Mapping) [37], LSD-
SLAM (Large-scale direct monocular SLAM) [38], SVO (Semi-direct visual odometry)
[39] and DSO (Direct sparse odomery) [40, 41]. Drawback of direct methods is that
they often require a GPU for real-time processing [22] due to high dimensionality
of the measurements. Figure 2.3 demonstrates a 3D map built using the LSD-SLAM
algorithm.

Figure 2.3: 3D reconstruction obtained in real time by LSD SLAM with omnidirectional cameras (Copy-
right c© 2015, IEEE)

2.2. Visual SLAM 13

RGB-D camera-based methods

RGB-D cameras provide both image and distance information, thus giving the 3D
structure of the environment directly. This leads to easier determination of scale of
the coordinate system in comparison to monocular vSLAM. Most popular RGB-D
camera-based SLAM approaches are Kinect Fusion [42] and SLAM++ [43, 44]. They
are mostly used for indoors applications since RGB-D cameras have an approximate
range of five meters and they are sensitive to sunlight. Iterative closest point (ICP)
algorithm is widely used to estimate the camera motion for these methods [21]. In ad-
dition, pose-graph optimization (counterpart of loop closure) and deformation graph
optimization are implemented to refine camera motion and to obtain a more geomet-
rically consistent model of the environment respectively [21]. A 3D model built with
RGB-D camera is given in Figure 2.4.

Figure 2.4: Optimized RGB-D 3D model (Copyright c© 2012, IEEE)

Camera Tracking and Scene Mapping

Visual SLAM algorithms estimate 6DoF (degrees of freedom) motion of the used cam-
era by matching image features under different poses. Most common approaches are
photometric and geometric alignments. The former estimates the motion by minimiz-
ing pixel intensity difference of two frames based on the assumption that the same
points will have the same color in different images [23]. The latter, on the other side,
tries to estimate the camera motion by minimizing Euclidean distances between cor-
responding points in 2D or 3D. Data from encoders and inertial measurement units
(IMUs) can also fused to provide additional information for motion estimation and to
enhance the robustness of the SLAM systems.

Two most common scene representations are point-based and volumetric maps.
Photometric and geometric bundle adjustment (BA) techniques are widely used in
construction of point-based maps. They apply a nonlinear optimization of camera
poses and points.

14 Chapter 2. State of the Art

Feature Detection

Feature detection is an essential element of feature-based vSLAM approaches. Preva-
lent feature extractors are FAST [45], SURF [46], BRIEF [47] and HARRIS [48] detec-
tors. Later, the features are tracked to produce optical flow from which motion is
estimated. A frequently used feature point tracker is the KLT tracker [49]. Some in-
stances of feature detecting and tracking are given in [50, 51]. Figure 2.5 is an instance
of SURF feature points matching.

Figure 2.5: An example of SURF feature points matching (Copyright c© 2019, IEEE)

2.3 Recent Trends in SLAM

Sensors

Novel sensor technology has always been one of the catalysers of advanced robotics
applications. For example, with the development of 3D laser range finders, au-
tonomous car technology has been enabled. Research on vision sensors has resulted
in applications such as augmented reality and vision-based navigation. As for SLAM,
light-field and event-based cameras are now in trend. Ergo, a short research on the
characteristics of these sensors has been carried out with a focus on their impact on
SLAM applications [3].

Light-field cameras or plenoptic cameras record not only the intensity of light
beams but also their direction. This technology enables depth estimation, video sta-
bilization and removal of specular reflectivity. It formulates motion estimation as a
linear optimization problem and gives more accurate results. However, it comes with
increased computational requirements due to the extra information obtained [52].

Even-based cameras send local pixel-level changes at the time they occur as op-
posed to conventional cameras that send full images at fixed intervals. Event-based
cameras have faster update rate, lower power consumption and storage requirements
than frame-based cameras. These characteristics ease the development of new SLAM
algorithms for faster motion and higher dynamic range. Some examples are [53, 54].

SLAM algorithms also benefit from measuring thermal, sound, pressure and mag-
netic stimuli in the environment. Two pieces of research on the use of these sensors
are [55, 56]. The former proposes using local anomalies of the ambient magnetic field
and the latter elucidates on navigation using already-installed wireless networks.

2.3. Recent Trends in SLAM 15

Deep Learning

Deep learning applications in SLAM are showing promise and are becoming more
popular [57]. Below are some recent instances of how deep learning can be used for
enhancing SLAM systems.

The work presented in [24] trains a deep neural network to obtain inter-frame
pose between successive images instead of using the conventional geometry of visual
odometry. Furthermore, regression forest and deep convolutional neural networks
(CNNs) are used to obtain 6DoF of a camera (see [58, 59]) and to estimate the map
from a single image (as in [60, 61, 62]). In order to reduce the computational complex-
ity of direct vSLAM algorithms, numerous attempts of applying deep learning for vi-
sual odometry have been carried out. Vikram’s and his colleagues’ work [63] presents
a deep learning approach for monocular visual odometry. In addition, Wang et al.
worked on end-to-end visual odometry with deep recurrent convolutional neural net-
works in [64]. A relative camera pose estimation using CNNs has been proposed in
[65] as well.

Apart from these supervised methods, unsupervised methods are also applied.
SfM-Net presented by Vijayanarasimhan et al. in [66] is a geometry aware neural net-
work for structure and motion estimation from video data. Besides, learning depth
and egomotion from monocular camera is focused on in [67]. Other proposed un-
supervised learning frameworks in the literature that we found interesting are [68,
69].

A recent trend in computer vision is to use CNNs and deep learning in order
to tackle the loop closure problem. Works such as [69, 70] illustrate the use of pre-
trained CNNs as feature generators to create whole image representations. In these
papers, it is concluded that features produced using CNNs are more robust to view-
point, illumination and scale variations of the environment. CNN features can also be
preprocessed and projected into a lower-dimensional space so that the loop detection
process is more efficient [71].

Chapter 3

System Description

Our investigation of the state of the art SLAM techniques has provided us the
knowledge to outline our own solution to the problem of localization and map-

ping in indoor environments. The scope of it the thesis has been selected in a way
to get us familiar with the most fundamental and well-documented techniques in
the realm of SLAM. Before presenting the specifications of the intended project, it is
thought to be beneficial to provide a high-level description to the reader as shown in
Figure 3.1. The idea of this thesis, in its most basic form, is to give a mobile robot
the ability to map its environment and localize itself, while enabling the visualization
of the obtained map and the knowledge of location on a separate remote computer
which is also used to move the robot arbitrarily in the environment.

Figure 3.1: High-level system description

As stated in Chapter 2 as well, visual SLAM is nowadays the most ubiquitous ap-
proach to solve the SLAM problem. As for LiDAR-based techniques, they are slowly
losing their popularity. Still, they are occasionally implemented, or at least LiDAR

16

17

scan information is combined with visual sensors to enhance the performance of the
system. In light of this information, even though the literature review strongly points
towards visual SLAM methods, in this thesis it is decided to continue with LiDAR-
based SLAM after taking the following into consideration. This project represents the
authors’ first contact to the world of SLAM algorithms and acquiring a fundamen-
tal knowledge of the classic SLAM solutions is believed to be more appropriate than
studying one of the avant-garde techniques.

A block diagram illustrating the components of the system and their correspond-
ing functionalities is shown in Figure 3.2. A Raspberry Pi 4 has been found convenient
to employ as a processing unit both for its computational capabilities and compati-
bility with the Kobuki TurtleBot mobile robot base available in the repository of the
Aalborg University Esbjerg. The local point cloud of the environment obtained via
the RPLiDAR A3 sensor will be shared with the Raspberry Pi 4 for information pro-
cessing purposes. This is also where the SLAM algorithm will be executed iteratively.
Furthermore, the Raspberry Pi 4 will play an important role in acting as a gateway
for the user to send control inputs to the Kobuki TurtleBot for its movement, as well
as for the TurtleBot to send back odometry data for performance evaluation purpose.

LiDAR

local point cloud control input u

odometry
Raspberry Pi TurtleBot

Computer

visualization datacontrol input u

Mobile robot and its on-board equipments

Figure 3.2: Simplified block diagram of the overall system

Regarding the state estimation aspect of the project, an Extented Kalman Filter
will be implemented for estimating the important states of the system and the envi-
ronment. The 2D map recurrently built as the robot navigates will be based on the
features extracted from the LiDAR scans. Among numerous feature extraction algo-
rithm options to pick from, it is decided to detect line features due to the natural
excessive existence of such beacons1 at indoor environments. In order to ease the in-
formation flow among all the mentioned elements of the system, the standard robotic
software writing framework, namely the Robotic Operating System (ROS), will be

1"Beacon" is just a term that will be interchangeably used with "landmark"

18 Chapter 3. System Description

used. Last but not least, the chosen programming language is Python 3 due to its
prevalence and dominance in the field of robotics.

The block diagram shown in Figure 3.2 is in consideration to the circumstances
when the SLAM algorithm is ready to be deployed on the Kobuki TurtleBot. That
being said, the final implementation in a real environment will be approached in a
series of developments leading towards it. These developments mostly relate to sim-
ulations using different platforms. First, as the algorithm code is being developed
using Python, our attempts would be to test, debug and optimize this code to the
utmost level, so as to avoid problems in the later steps. Ergo, prior to testing the
algorithm using a professional simulator (e.g. Gazebo), the written code would be
first tested against the scenarios created by us, using Python2. We will, by ourselves,
artificially generate the sensor readings, the indoor structure and the noise elements
regarding perception of surroundings and motion of robot. Once satisfactory results
are achieved, we proceed to testing the algorithm with ROS and Gazebo. The second
step, i.e. the implementation with ROS and Gazebo, will be driven towards a prepara-
tory task of simulating and creating a medium which will see its usage in practical
implementation. Through this step, the motive will be to emulate the algorithmic im-
plementation as close to the real life situation as possible. Naturally, this stage would
see the utilization of more complex simulators, as compared to the Python simulation
step, corroborated by the ROS implementation strategy. Notwithstanding, if the im-
plementation with ROS and Gazebo yields a competent performance, the plausibility
of the developed algorithm working on the Kobuki TurtleBot is reinforced. The final
step, obviously, would be the testing in an real indoor area, with the set-up shown in
Figure 3.2. This piecemeal way of development was adopted to isolate the problems
within steps, allowing for a comparatively easier identification of errors.

2This step is later referred to as "Python Simulations" in upcoming chapters

Chapter 4

State Estimation

The crux of many robotics problems is state estimation from sensor readings. There
would be no localization or SLAM algorithms if the location of robot and its sur-

rounding objects could be known directly form sensor measurements. Sensors pro-
vide partial information that must be inferred to get the states of our systems. In
addition, perceptual data is laced with noise. For these reasons, state estimators are a
common sight in problems involving robotics and are utilized to extract valuable state
information from the available unrefined data. This chapter thereupon introduces the
state estimating algorithms crucial to our approach on Simultaneous Localization and
Mapping.

4.1 The Kalman Filter

The Kalman filter prevails as one of the best studied methods for state estimation in
concern to a discrete-time controlled process. The significance of the Kalman filter
Equations will later become apparent as the the backbone of other relatively complex
algorithms for localization and SLAM.

Before proceeding into the details of this filter it is crucial to mention its underly-
ing assumptions and conditions. As it is a Bayesian filter, it is subject to the Markov
assumption (also known as complete state assumption). According to which, the past
and the future data is independent if the current state xt is known [7]. The represen-
tation of beliefs in Kalman filter is done through the mean and covariance and such
representation is called the moment parameterization.

A primary characteristic of Kalman filter is its confinement to problems entail-
ing linear Gaussian systems. Therefore, achieving a Gaussian Posterior is critical.
To ensure this, the state transition probability p(xt | ut, xt−1) and the measurement
probability p(zt | xt) should have linear functions in their arguments along with
their added respective Gaussian noise. The linear motion model and the observation
model are shown in Equations 4.1 and 4.2 respectively. Lastly, it should also adhere
to condition that the initial belief must be a normal distribution [7].

19

20 Chapter 4. State Estimation

xt = Atxt−1 + Btut + εt (4.1)
zt = Ctxt + δt (4.2)

In the Equations above, xt is a state vector at time step t and ut symbolizes the
control vector. For the sake of definitions, it is assumed here that the size of the state
vector is n (signifying n states) while the control vector is of dimension m. Similarly,
zt expresses the measurement, thus dubbed as the measurement vector with length k.

Furthermore, considering the state transition Equation 4.1, At is a n × n matrix
which serves the functionality of relating the state from the previous time step to the
state at the current step such that there is neither a driving function nor any process
noise present. The Bt matrix on the other hand is of dimension n×m and is included
with the purpose of relating the control input ut to the state xt. The last element in
the state transition equation is the added Gaussian random vector εt. Labelled as the
process noise in literature [72], it models the uncertainty in state transition. A defining
factor in this noise is its white nature (i.e. zero mean) and as expected, a normal
probability distribution. Additionally, its covariance is denoted by Qt [72]. From
now on, the probability distribution for the process noise will be expressed using the
notation in Equation 4.3.

εt ∼ N (0, Qt) (4.3)

Similarly, the measurement Equation 4.2 has a k × n matrix Ct for relating state
to the measurement. In other words, it specifies the mapping from state space to
measurement space. The added vector δt represents the measurement noise with
similar properties to the process noise such as zero mean and normal distribution.
The covariance in this case is given by the Rt matrix and thus can be represented
using familiar notation depicted in Equation 4.4. It is worth mentioning that both the
process noise and the measurement noise are independent of each other [7][72].

δt ∼ N (0, Rt) (4.4)

4.1.1 Kalman Filter Algorithm

With the preliminary details handled in the section above, the focus can now be
shifted towards the Kalman filter algorithm. The objective here is to demystify the
Kalman filter Equations and the whole process that is undertaken for state estima-
tion. The well known Equations shown in 4.5-4.9 represent the Kalman filter. Any-
how, it seems beneficial to first present a general overview of the filter process before
descending into the mechanics of its constituent equations. The algorithm can easily
be compartmentalized into two parts: Prediction and Update. These two parts work
together in a fashion similar to feedback control. The Equations from 4.5-4.6 encom-
pass the prediction section of the algorithm and the Equations 4.7-4.9 represent the
measurement update section.

4.1. The Kalman Filter 21

µt = Atµt−1 + Btut (4.5)

Σt = AtΣt−1A>t + Qt (4.6)

Kt = ΣtC>t (CtΣtC>t + Rt)
−1 (4.7)

µt = µt + Kt(zt − Ctµt) (4.8)
Σt = (I−KtCt)Σt (4.9)

Primarily, the equations that form the prediction section estimate the process states
at a certain time and then a feedback is obtained in terms of (noisy) measurements.
The prediction equations are actually projecting forward in time, the current state
and the error covariance to determine priori estimates for the next time step. In
continuation, the update equations take into account the measurement and the priori
estimate to procure the posteriori estimate.

Dynamics and Observation Model

Kalman Filter

At

Bt Ct

Qt Rt

z−1

At

Bt −Ct

z−1

ut zt

µt−1

µt

innovation

µt

Kt
µt−1

Figure 4.1: Kalman Filter block diagram

Figure 4.1 illustrates the elements of the Kalman filter in a block diagram fashion.
As stated earlier, the Kalman filter represents beliefs using the mean and the covari-
ance. Notation wise, the belief bel(xt) at time t is represented by mean µt and the
covariance Σt. The input to the filter is belt−1 consisting of µt−1 and Σt−1. The belief
belt−1, for the first iteration is part of the initialization but in subsequent iterations, it
is the posteriori calculated in the last time step.

Prediction Equations

The prediction step calculates the estimated belief bel(xt) which is represented by the
mean µt and covariance Σt. The estimated mean µt is deterministically found using
the Equation 4.5 where the matrix multiplication Atµt−1 computes the state for the
next time step which is then added to the contribution of the control input to the state.

22 Chapter 4. State Estimation

The second Equation 4.6 determines the estimated error covariance Σt. Basically, this
equation symbolizes that the new uncertainty is equal to the old uncertainty (Σt−1)
plus the uncertainty Qt due to the motion or process.

Update Equations

The update step most briefly can be described as the product of two Gaussians: the
prediction and observation (i.e. measurement). The result of this multiplication of
Gaussians is also a Gaussian with its mean equal to the weighted mean of the multi-
plied Gaussians. The first Equation 4.7 in this part is for the calculation of the term
Kt, known as the Kalman gain. It is determined such that it minimizes the posteriori
error covariance. Accordingly, it is later shown mathematically how the Kalman gain
leans towards the Gaussian with the lower uncertainty. However, it is helpful to first
introduce the rest of the update equations. The Equation 4.8, deals with the objective
of providing posteriori mean (µt) as a linear combination of priori estimate (µt) and
a weighted difference between the actual measurement (zt) and the predicted mea-
surement (Ctµt). This difference is key to the algorithm, as it reflects the discrepancy
between the above mentioned measurements. It is known as innovation or residual.
Lastly, the Equation 4.9 lets us adjust the error covariance Σt according to the new
information obtained from the measurement [72].

The degree to which the measurement is included in the new state estimate com-
putation is controlled by the Kalman gain. This can easily be shown by considering
two extreme cases for measurement. The first case that will be undertaken is of the
perfect sensor, meaning there is no error in the sensor data and thus uncertainty is
zero. The assessment of the Kalman gain in such a scenario is presented mathemati-
cally through limits where the measurement covariance Rt approaches zero (depicted
in Equation 4.10).

lim
Rt→0

Kt = lim
Rt→0

ΣtC>t
CtΣtC>t + Rt

=
ΣtC>t

CtΣtC>t + 0
= C−1

t (4.10)

As it can be seen in Equation 4.11, the resulting Kalman gain when substituted
into Equation 4.8 makes the posteriori mean estimate equal to C−1

t zt.

µt = C−1
t zt (4.11)

This makes sense, as the inverse of the Ct matrix is now mapping from measure-
ment space to the state space. Therefore, Equation 4.11 is implicitly stating that the
posteriori mean is just equivalent to the measurement and has no influence from the
predicted estimate. Logically speaking, when we have a hypothetically perfect sensor,
it would be a sound decision to just rely on the sensor data for state estimation.

The other extreme case is the situation in which there is no measurement i.e. the
measurement covariance can be considered infinity. This is because with no measure-
ment, the uncertainty becomes infinite. This situation is shown in the Equation 4.12
below.

4.1. The Kalman Filter 23

lim
Rt→∞

Kt =
ΣtC>t

CtΣtC>t + ∞
= 0 (4.12)

The Kalman gain, now zero, results in the posteriori mean estimate to solely rely
on the prediction and discard the measurement (illustrated in Equation 4.13).

µt = µt (4.13)

Through these extreme cases it is inherently clear that Kalman gain regulates the
influence of the priori estimate and the measurement on the determination of the
posteriori estimate.

4.1.2 Kalman Filter Example

To finally drive home the point, this section will look at one iteration of a 1D Kalman
filter example. The example in consideration here is of a robot’s movement in one-
dimensional space and the Kalman filter is used to provide an estimation of the robot’s
location. The blue line in Figure 4.2 shows the priori estimate (also referred to as pre-
diction) of robot’s location in terms of the Gaussian distribution. To remind, the
priori estimate is computed using the prediction Equations 4.5-4.6. Now, the red line
illustrates another Gaussian. This Gaussian distribution is obtained from the mea-
surements, where its width concerns the uncertainty in measurements and its mean
is centered at the peak of this normal distribution. Moreover, it could be seen that the
priori estimate Gaussian is wider than the observation distribution. Therefore, when
the information from the measurement is integrated in the update step, the mean of
posteriori distribution (obtained using Equation 4.8) is positioned in between the pre-
vious two means, although it is located more towards the mean of the measurement.
Furthermore, the width of the posteriori is less as compared to the previous distribu-
tions. From this, it could be clearly seen that the posteriori (dashed line) calculated
by the Kalman filter is done in a way that the uncertainty is reduced such that the
Gaussian with less uncertainty has more influence on the posteriori mean.

Figure 4.2: Kalman Filter example

24 Chapter 4. State Estimation

4.2 Extended Kalman Filter

It has already been emphasised that for the Kalman filter to be applicable, both the
measurement and motion models should be linear functions of the state. This de-
tail forms the basis for the reasoning to explore the Extended Kalman Filter. This
idea here is key because the Kalman filter depends on its random variable distribu-
tions to be Gaussian and when such a random variable undergoes a transformation
through a linear function the result itself is a Gaussian. However, in case of a non-
linear function, the shape for the density of the random variable is distorted by the
non-linearities and thus resulting in a non-Gaussian distribution. It may be clear that
non-linear state transitions and measurements are impediments to the application of
Kalman Filter. Unfortunately, it is too much of wishful thinking to hope for linear
transformations, as in practice the state transitions and measurements are rarely lin-
ear. The commonality of non-linear state transition and measurement function can
be illustrated through the case of a robot with constant translational and rotational
velocities resulting in a circular trajectory, such motion cannot be described using a
linear state transition. Furthermore, it is conventional to include orientation in the
state vector for localization problems, this leads to non-linearities in the modelled
difference equations in the form of sines and cosines.

With the above discussion in mind, we now consider a more general case for the
Kalman Filter by relaxing the linearity assumption. For a winder range of appli-
cations, we assume that the process and measurement are governed by non-linear
stochastic difference equations, the state vector still is x. The state transition and
measurement equations are shown in 4.14 and 4.15, where g and h represent the
non-linear functions.

xt = g(ut, xt−1) + εt (4.14)
zt = h(xt) + δt (4.15)

Equations 4.14 and 4.15 are direct replacements to the linear Equations 4.1 and
4.2. If the Equation 4.14 is considered, the function g is replacing the matrices At and
Bt but with same arguments in question i.e.: xt−1 and ut. Similarly, the function h
replaces Ct. The non-linear functions perform the same functionalities as their linear
counterparts, therefore it is not worthwhile to delve into each of their responsibilities,
in order to avoid repetition.

4.2.1 Linearization

An ad-hoc solution to the problem of non-linearity is through linearization. The idea
is to approximate the non-linear function by a linear function at a certain point. This
is achieved through the first order Taylor expansion. However, a crucial fact to note
is the point at which we linearize. The question here is, what is the most likely
state at the time of linearization in order to obtain a good approximation? The state

4.2. Extended Kalman Filter 25

in question would be at the mean µt−1. The Taylor expansion for state transition
function g is shown in Equation 4.16.

g(ut, xt−1) ≈ g(ut,µt−1) +
∂g(ut, xt−1)

∂xt−1
(xt−1 − µt−1)

≈ g(ut,µt−1) + Gt(xt−1 − µt−1)

(4.16)

Accordingly, this linear approximation is a result of the function’s value and its
slope, which is given by the partial derivative w.r.t xt−1. The partial derivative denoted
by Gt, due to its multidimensional nature, is actually a Jacobian matrix. So, Gt is a
matrix of size n× n which differs with time due to the varying nature of µt−1 and ut.
Moreover, to give an instance of a Jacobian matrix, the Equation 4.17 shows a general
Jacobian matrix for a vector valued function.

Gt =

∂g1
∂x1

∂g1
∂x2
· · · ∂g1

∂xn
...

...
...

∂gn
∂x1

∂gn
∂x2
· · · ∂gn

∂xn

 where g(x) =

g1(x)
g2(x)

...
gn(x)

 (4.17)

Similar to the case of state transition function, the measurement function is also
linearized, this time at µt (the estimated priori mean). The Taylor expansion could be
seen in Equation 4.18. Here Ht is a time varying Jacobian matrix as well.

h(xt) ≈ h(µt) +
∂h(µt)

∂xt
(xt − µ)

≈ h(µt) + Ht(xt − µ)
(4.18)

With the effects of linearization, the Kalman Filter (KF) algorithm transforms into
the EKF algorithm with just minor changes. The EKF algorithm comprises of the
Equations shown in 4.19 - 4.23.

µt = g(ut,µt−1) (4.19)

Σt = GtΣt−1G>t + Qt (4.20)

Kt = ΣtH>t (HtΣtH>t + Rt)
−1 (4.21)

µt = µt + Kt(zt − h(µt)) (4.22)
Σt = (I−KtHt)Σt (4.23)

On comparison of EKF and KF equations, there are certain differences. The line 1
(or Equation 4.19) of EKF is responsible for estimating the priori mean (µt) using the
non-linear process function (also referred to as the state transition function) around
the posteriori mean calculated in the last iteration of the algorithm (µt−1) along with
the control vector (ut). Moving forward, the objective of the second line in EKF is same

26 Chapter 4. State Estimation

as before but the noticeable changes are in replacement of the linear system matrix
At by the Jacobian matrix Gt. The remaining is the update part of the algorithm,
here the Jacobian matrix Ht is utilized instead of Ct and the non-linear observation
function sits in place of the linear measurement system. It should be noted that the
value of the non-linear measurement function and the point of linearization is now at
the estimated priori mean (µt) which is determined in the prediction part.

From above, it is obvious that there are minor distinctions between the two state
estimaters. However, it would be wrong to define the EKF as an exact replacement
for KF but just for non-linearities. Although, like Kalman filter, EKF uses the mean
and covairiance to represent the belief, the diverging point is the fact that in case
of EKF this belief is merely an approximation as opposed to an exact representation
when concerning the KF. Therefore, the goal of the Extended Kalman Filter is dif-
ferent. Its focus is on computing the most efficient estimate of the posteriori mean
and covariance instead of their exact closed form solutions. This will present some
challenges which are discussed in the next section. Although repetitive, the figure 4.3
succinctly summarizes all the key points that have been the concern of the Kalman
Filter sections.

Kt = ΣtH>t (HtΣtH>t + Rt)−1

µt = µt + Kt(zt − h(µt))

Σt = (I−KtHt)Σt

3) Compute the Kalman Gain

4) Update Estimate with measurement

5) Update Covariance

Initial estimate: µt−1, Σt−1

Update

Σt = GtΣt−1G>t + Qt

1) Project the state ahead
µt = g(ut,µt−1)

2) Project the covariance ahead

Prediction UpdatePrediction

Figure 4.3: Extended Kalman filter algorithm in flow chart form

4.2.2 Drawbacks of EKF

Linearizing the measurement and motion models using Taylor expansions is how
these functions are incorporated into the inherently linear Kalman filtering procedure.
However, being able to work with nonlinear functions in the filtering process does not
necessarily mean that EKF will compute the posterior belief with enough accuracy.
It has been mentioned before that EKF only provides an approximation of the true
Gaussian. The goodness of the filter approximation will depend on two elements: the
local nonlinearities of the non-linear function and the prior uncertainty of the random
variable being estimated [7].

The first of the mentioned two factors affecting the quality of the linear Gaus-
sian approximations is depicted in Figure 4.4. The more accurate Monte-Carlo es-

4.2. Extended Kalman Filter 27

timates of the Gaussian distributions p(y1) and p(y2) are shown roughly for com-
parison purposes. When two random variables x1 and x2 with identical variances
are passed through separate regions of the same nonlinear function g(x) (due to dis-
similar means) which exhibit different levels of nonlinearities, the obtained Gaussian
distributions will differ. The random variable x1 whose mean falls into a more non-
linear local region of the function g(x) possesses a larger approximation error than
that of x2.

x1

p(
x 1
)

y
=

g(
x)

y1

p(y1)

Function g(x)
Taylor approx.

Monte-Carlo
EKF Gaussian

x2

x2

p(
x 2
)

y
=

g(
x)

y2

p(y2)

Function g(x)
Taylor approx.

Monte-Carlo
EKF Gaussian

x1

Figure 4.4: Plot illustrating the effect of linearization point in obtaining accurate posterior approxima-
tions

Regarding the second dependency of EKF (illustrated in Figure 4.5), the prior
uncertainty of the random variables x3 and x4 after being passed through the linear
Taylor expansion of g(x) will determine the accuracy of the calculated posterior beliefs
p(y3) and p(y4). The wider Gaussian p(x3) produces a more distorted Gaussian with
less accurate estimates of the mean and covariance than that of x4.

x3

x3

p(
x 3
)

y
=

g(
x)

y3

p(y3)

Function g(x)
Taylor approx.

Monte-Carlo
EKF Gaussian

y4

p(y4)

Monte-Carlo
EKF Gaussian

x4

x4

p(
x 4
)

y
=

g(
x)

Function g(x)
Taylor approx.

Figure 4.5: Plot illustrating the effect of having a small uncertainty in obtaining accurate posterior
approximations

To sum up, if the nonlinear functions exhibit more or less linear behaviours at
their points of linearization, then the posterior beliefs produced by the EKF will be
accurate approximations. Furthermore, random variables with larger variances will
be exposed more to the nonlinearities of the function, even though the latter is quite

28 Chapter 4. State Estimation

linear at the mean of the belief. For these reasons, it is important to maintain the
covariances of random variable as small as possible at all times.

4.2.3 EKF Alternatives

Linearizing nonlinear motion and measurement functions by Taylor series expansion
in EKF yields good enough approximations as long as the two factors worsening the
filtering performance mentioned in the previous section are not dominantly present.
In order to enhance the process of linear Gaussian transformation needed in KF, there
exist two other methods one can use that have proved to give superior results than
Taylor series. The first technique, employed in the Assumed Density Filter (ADF),
is called moments matching: the true mean and the true covariance of the posterior
are preserved unlike EKF. The second other approach, applied in Unscented Kalman
Filter (UKF) is to perform a stochastic linearization using weighted statistical linear
regression process. ADF and UKF are better at estimating Gaussians thanks to their
unique methods of linearization, and thus can be preferred over EKF [7]. Figure 4.6
demonstrates inaccuracies that occur when a Gaussian is estimated using EKF and
UKF by comparing the results of both methods with the true distribution.

mean

covariance

Actual (sampling) Linearized (EKF) UKF

sigma points

True Gaussian

transformed

y = f (x) y = f (x)
Σt = GtΣt−1G>t

Υ = f (X)

sigma points

EKF Gaussian UKF Gaussian

Figure 4.6: Mean and covariance propagation of actual, EKF and UKF transformations

Another alternative to KF, that is subject to the same assumptions, is the Informa-
tion Filter (IF). It uses a different Gaussian parameterization composed of an infor-
mation matrix and an information vector instead of a mean and a covariance. This
dissimilar parameterization leads to different update equations with varying com-
putational complexities between the techniques. However, both filtering procedures
produce the same results in the end and are thus referred to as the dual of each other
[7]. Assimakis et al. in [73] conclude that IF is executed faster if Z > 0.75N for time-
invariant systems where Z is the measurement vector dimension and N is the state
vector dimension.

Chapter 5

Modeling

The contents of this sections will cover the remaining essential subject matter that
form the prerequisites for the upcoming algorithms. From the preceding section,

the critical role of both motion and measurement models for state estimation should
be unequivocally clear. Consequently, this chapter will explore our take on them,
along side the reasoning to justify those preferences. It will dig into the intricacies of
feature based observation model as well as reconnoitre one of its pivotal components
i.e. the split and merge algorithm for line extraction. Needless to say, the forthcoming
chapters rely heavily on the models set up here and thus signify the importance of
this chapter to the undertaken problem.

5.1 Motion Model

The probability density function p(xt | xt−1, ut) associated with the state transition
and required in the prediction step of the Kalman filter can be described using distinct
motion models. In the specialized literature, the two prevalent approaches are the
velocity model [7, 74, 75] and the odometry model [76, 77, 78], with the first one
being more frequently preferred. Odometry, albeit very accurate, has the shortcoming
of being available only after motion commands are executed, which renders its use
for motion planning impossible. For this reason, and with a desire of following the
clearly explained method in [7], the velocity model was selected.

Regardless of the chosen model, the following notation is made. There are two
considered reference frames. First and foremost, there is a global reference frame (G),
attached to the earth (assumed stationary and flat) and with the origin at the point
O, where the robot is located at time t0 = 0. As the vehicle moves, its position and
orientation obviously change and it is thus helpful to define an additional coordinate
system centered on the robot and moving together with it. We refer to this as the
body frame (B), but we may also call it the local frame or the sensor frame. Let us
also define a state vector xt = [xt yt θt]> representing the vehicle’s pose at time t.
Pose comprises the Cartesian global coordinates and the bearing or heading direction,
i.e: the angle between the unit vectors x̂G and x̂B. For a visualization of the preceding

29

30 Chapter 5. Modeling

explanation, refer to the left side of Figure 5.1.

Velocity Motion Model

ŷB x̂B
θt

x̂GO xt

yt
ŷG

O xt−1xc

vt

θt−1yt−1

Assumed

yc

rc

ωt

Circular Trajectory

xt

yt
θt

xt

xt−1

Figure 5.1: Left: Pose of the robot within the global reference frame; Right: Circular motion in the
velocity model (this particular depiction assumes negligible state uncertainty)

In the selected approach to modeling two-dimensional stochastic motion, it is
assumed that between any two successive states xt−1 = [xt−1 yt−1 θt−1]

> and
xt = [xt yt θt]>, the robot moves on a circular trajectory of radius rc, with trans-
lational velocity vt of unchanging magnitude and constant, non-zero, angular speed
ωt. We define the control given at time t to be ut = [vt ωt]>. A circular motion is
taking place during the time interval ∆t, and the coordinates (xc, yc) of the point rep-
resenting the center of the circle on which the locomotion transpires can be described
by simple trigonometry using either the initial or the final point of the depicted arc.
The right side of Figure 5.1 illustrates this movement, while the two sides of Equa-
tion 5.1 give the two possible representation of the circle’s center:

xc = xt−1 −
vt

ωt
sin(θt−1) xc = xt −

vt

ωt
sin(θt−1 + ωt∆t)

yc = yt−1 +
vt

ωt
cos(θt−1) yc = yt +

vt

ωt
cos(θt−1 + ωt∆t)

(5.1)

Substituting xc and yc given by the left side of the equation into the right-hand
side yields the expression in Equation 5.2, which links xt−1 and xt assuming an ideal
motion, i.e.: the robot moves strictly according to the fixed commanded velocities.xt

yt
θt

 =

xt−1
yt−1
θt−1

+

− vt
ωt

sin(θt−1) +
vt
ωt

sin(θt−1 + ωt∆t)
vt
ωt

cos(θt−1)− vt
ωt

cos(θt−1 + ωt∆t)
ωt∆t

 (5.2)

5.2. Measurement Model 31

Notwithstanding, as real-world processes are subjected to noise, it is necessary
to model the ineluctable uncertainty by considering some inexact velocities v̂t and
ω̂t that are actually responsible for the change in the vehicle’s pose. Furthermore,
even with the noise taken into account, it is easy to notice that, as a consequence of
the circular motion, the final pose of the robot is constrained to a two-dimensional
manifold, whereas the real pose space is actually three-dimensional. This causes
the posterior distribution p(xt | xt−1, ut) to become degenerate, something that will
damage state estimation. A correction can be made to account for this issue, correction
which consists of assuming that the vehicle performs a rotation upon its arrival to the
final pose. In view of this observation, we introduce an additional angular-velocity-
like noisy parameter γ̂t, which will play its role in the heading at time t [7, 31]. The
previous remarks are mathematically expressed in the form of Equation 5.3: v̂t

ω̂t
γ̂t

 =

vt
ωt
0

+

εα1v2
t +α2ω2

t
εα3v2

t +α4ω2
t

εα5v2
t +α6ω2

t

 (5.3)

where εσ2 denotes a zero-mean normal random error variable with variance σ2.
In the preceding equation, it is obvious that the assumption is that the variance of
the error depends on both commanded velocities and some robot-specific error pa-
rameters αi, i ∈ {1, . . . , 6}. Larger parameters are an illustration of a less accurate
system [7]. Combining the introduction of uncertainty with the previously-devised
exact motion described by Equation 5.2 produces the stochastic motion model given
in Equation 5.4:

xt = g(xt−1, ut, εt)xt
yt
θt

 =

xt−1
yt−1
θt−1

+

−
v̂t
ω̂t

sin(θt−1) +
v̂t
ω̂t

sin(θt−1 + ω̂t∆t)
v̂t
ω̂t

cos(θt−1)− v̂t
ω̂t

cos(θt−1 + ω̂t∆t)
ω̂t∆t + γ̂t∆t

 (5.4)

5.2 Measurement Model

Sensing is the second stochastic process incorporated in the Bayes filter and it is de-
scribed by the continuous probability model p(zt | xt, m). With so many existing
sensor technologies, it is natural that numerous ways of defining this probability den-
sity function have been developed. A very prevalent approach for data acquisition
using laser rangefinders in the field of robot localization is represented by feature-
based methods, in which only specific information about the environment is extracted
from the raw measurements of the sensing device at hand. This information can be
eventually utilized for creating feature-based maps of the surroundings. This prop-
erty has been proven to be quite advantageous, explaining why features have been
traditionally chosen as the backbone of sensor models [7].

32 Chapter 5. Modeling

5.2.1 Feature-Based Observation Model for Point Landmarks

The present subsection describes arguably the simplest feature-based observation
model, employed in [7]. Here, the authors consider the case in which landmarks
extracted from the environment are discrete points with fixed coordinates1 in the
global reference (xj, yj) frame and append to them an additional optional identifier
called signature sj (e.g.: numerical value indicating average colour). It is subsequently
assumed that the robot is equipped with a range and bearing sensor capable of ex-
tracting the i-th feature in the form [ri

t ϕi
t si

t]
>. This vector holds a landmark’s signa-

ture and position expressed in polar coordinates in the robot’s local frame. From the
entire measurement data set zt supplied by the said sensor at a specific time, only the
sought features are kept. Feature extraction maps the high-dimensional measurement
space to a feature space of a much lower dimension. It can thus be perceived as a
means of filtering excess data and reducing the size of the measurement vector, being
beneficial from a computational perspective [7]. This is generally true, irrespective of
the type and shape of the extracted landmarks. Denoting the feature extractor as the
surjective vector-valued function F (zt), its output is shown in Equation 5.5:

F (zt) = {F 1
t , F 2

t , . . . } =

 r1

t
ϕ1

t
s1

t

 ,

 r2
t

ϕ2
t

s2
t

 , . . .

 (5.5)

where the superscripts denote a feature’s number in the entire feature vector.
If we accept that the i-th feature corresponds to the j-th landmark in the map, then

an estimation of the position of this landmark relative to the robot can be devised
through straightforward trigonometry applied to the configuration in Figure 5.2. In
this illustration, we depict the ideal scenario of a noiseless sensor. The blue dot in-
dicates the point measurement, while the yellow seven-point star symbolizes a land-
mark.

From the belief of the robot about its location and the knowledge of the position
of a landmark within the global reference frame, the estimated polar coordinates and
the signature of the landmark in the body frame are given by Equation 5.6. Notice the
introduction of noise to accommodate the real-life imperfect measurements corrupted
by noise. ri

t
ϕi

t
si

t

 =

√
(xj − xt)

2 + (yj − yt)
2

arctan 2(yj − yt, xj − xt)− θt
sj

+

δσ2
r

δσ2
ϕ

δσ2
s

 (5.6)

where the δσ2 denotes a zero-mean Gaussian error variable with standard deviation
σ.

1The case of moving landmarks is not addressed in this report

5.2. Measurement Model 33

ŷB x̂B
θt

x̂GO xt

yt
ŷG

yj

ϕi
t

ri
t

Landmark

xj

Figure 5.2: Illustration of the robot’s onboard sensor measuring the relative position of a point land-
mark

5.2.2 Feature-Based Observation Model for Line Landmarks

The model utilized here for line landmarks is the same as the one proposed by the
authors of [77]. Just like in this paper, we denote rectilinear features by lj, and rep-
resent them in the global frame by the polar coordinates (rj, ψj) of the point on the
line that, when joined with the global origin, gives a segment perpendicular to lj.
Since such lines will be used to build and/or describe a map m, lj is represented as
an element of the map by the vector mj = [rj ψj]

>. A signature parameter can be
added if needed, though it is not crucial for feature extraction. We again assume, as in
Section 5.2.1, that a range and bearing sensor on the robot can supply measurements
from which features of the form [ρi

t αi
t]
> can be extracted. These are the body-frame

polar coordinates of the point on line lj that, when joined with the local origin2, gives
a segment perpendicular to lj. We can proceed and write the feature vector as shown
in Equation 5.7.

F (zt) = {F 1
t , F 2

t , . . . } =
{[

ρ1
t

α1
t

]
,
[

ρ2
t

α2
t

]
, . . .

}
(5.7)

Henceforth, we shall drop the F -notation and write zt for the vector of features,
and we may sometimes alternatively refer to it as the measurement vector directly.
In addition, we may also still denote by zt the entire vector of points supplied by
the sensor, and the reader will be told when that is the case. Let us also denote the
i-th feature zi

t. It should be stated that we impose the restrictions ρi
t, rj

t ≥ 0 and
αi

t, ψj ∈ (−π, π].
The observation model utilized is contingent on the intersection of the vector join-

ing the origin of the global coordinate system with the robot’s current position - we

2Just to clarify, by "local origin" we mean the origin of the local (or body) frame

34 Chapter 5. Modeling

denote this vector by pG - and the extension of the j-th line feature lj. There are hence
two cases that have to be considered, as it can be readily seen from Figure 5.3. Once
again, the blue circle is associated with the sensor data in the local frame and the star
shows the point that is saved as a landmark. Notice that in this figure the extracted
feature and the landmark it is associated with are basically represented by the same
line. In a real scenario, the feature extraction from sensor data leads to lines that are
not superimposed to the landmarks in the map they are supposed to represent.

pG

ŷB x̂B
θt

x̂GO xt

yt
ŷG

rj

αi
tρi

t

ψj

Landmark mj

ŷB x̂B
θt

O xt

yt
ŷG

rj

αi
t

ρi
t

ψj

Landmark mj

Extracted Line
lj

pG

Extracted Line
lj

x̂G

Figure 5.3: Illustration of the robot’s onboard sensor measuring the relative position of a line landmark.
Left: pG ∩ lj = ∅; Right: pG ∩ lj 6= ∅ (see the pink point)

Starting with the presumption that the i-th feature corresponds to the j-th land-
mark in the map, we obtain, with the aid of a simple trigonometrical approach de-
scribed in Appendix A, Equation 5.8, which constitutes the stochastic measurement
model for line landmarks:

[
ρi

t
αi

t

]
=

[
−rj + xt cos(ψj) + yt sin(ψj)

ψj − θt + π

]
+

[
δσ2

ρ

δσ2
α

]
if pG ∩ lj 6= ∅[

rj − xt cos(ψj)− yt sin(ψj)

ψj − θt

]
+

[
δσ2

ρ

δσ2
α

]
if pG ∩ lj = ∅

(5.8)

Taking advantage of the mathematical similarity between the two expressions
above, we can encompass both sensor models in the formula given in Equation 5.9:

zi
t = h(xt, j, m, κ) + δt[

ρi
t

αi
t

]
=

[
(−1)κ(−rj + xt cos(ψj) + yt sin(ψj))

ψj − θt + (1− κ)π

]
+

[
δσ2

ρ

δσ2
α

]
(5.9)

5.3. Extraction of Line Features 35

where κ ∈ {0, 1}. We set κ = 0 if an intersection occurs, and we let it be 1 if there
is no intersection. The variables of type δσ2 have been already defined in the previous
subsection.

At this point, the ability to identify the intersections that occur between landmarks
and the position vector pG becomes quite desirable. The simple reason is that only
one of the two sensor models should be chosen accordingly in each case. The easiest
and most elegant means of making the correct decision would be to choose either
variation, say the first one, in Equation 5.8, and check the resulting measurement
estimation. If ρi

t is positive, the initial guess was correct and κ would be 0. For a
negative distance, ρi

t should be simply multiplied with −1, π should be added to αi
t

and κ should be set to 1.

5.3 Extraction of Line Features

Obtaining a useful representation of rectilinear environmental features is inherently
involving a processing stage when it comes to the raw measurements supplied by the
onboard sensory equipment. As noted in the previous section, a sensor supplies a
vector of range and bearing pairs of high dimensionality for all the points within its
visual range. We denote said M pairs by [dk φk]

>, k ∈ {1, . . . , M}. These are the polar
coordinates in the robot-centered reference frame of all the points sensed at a certain
time. Extraction is synonymous to deducing the [ρi

t αi
t]
> parameters belonging to a

real-world linear-shaped feature.

5.3.1 Segmentation

In the specialized literature, several line extraction algorithms have been employed
with acceptable degrees of success. An in-depth comparison of such algorithms in
the context of indoor mobile robotic navigation using a 2D laser sensor has been
carried out in [79]. All the methods discussed there have in common the aims of
identifying the number of lines in the environment, assigning clusters of points to
specific lines and finally estimating the sought parameters based on the individual
groups of points. These goals are attained in a two-step manner, by first segmenting
the points that are found to belong to a common feature and then fitting lines to the
individual point clusters. Based on concrete empirical data, the authors of the afore-
mentioned paper inferred that possibly the best algorithm for real-time applications
related to SLAM is Split-and-Merge, which provides "superior speed and correctness"
[79] as compared to the other investigated approaches. In view of these findings,
Split-and-Merge has been selected in this project.

The segmentation process consists of examining all the scanned data at time t,
sorted by the angular coordinate. Starting form an all-encompassing segment S1,
points are iteratively being grouped together in smaller subsegments. Following this
procedure, merging similar (collinear) clusters is performed using a sequence of steps

36 Chapter 5. Modeling

that mirrors the one employed during segmentation. Algorithm 1 gives the directions
for implementing Split-and-Merge [79, 80].

Algorithm 1: Split-and-Merge

1 Split_and_Merge(S1):
2 S1 consists of all the M points scanned at time t. Place S1 in a list L;
3 Create a line by uniting the first and last point of the next segment Si in the

list L;
4 Find the most distant point pk relative to the fitted line, if the current segment

has more than 2 points;
5 If the distance is smaller than a predefined threshold value, go back to Step 3;
6 Else, divide Si at pk into two subsegments, Si,1 and Si,2, and let them

substitute Si in L. Go to Step 3;
7 After checking all the segments in L, merge the collinear ones;
8 Discard segments that are too short or consist of less than a certain number of

points;
9 return L;

Identifying collinear segments that should be merged is a matter of uniting the
same point of a segment with the last point of the successive segment in the list and
again searching for the most distant point to this new line. If the distance is found
to not exceed a threshold (i.e.: it is considered satisfactorily small), the segments are
merged. After merging, the segments that are too short are discarded, for they are
deemed unreliable [77]. The Split-and-Merge variation in which fitting (Step 3) is
done by simply uniting the first and last points in a segment is called Iterative-End-
Point-Fitting.

A visualization of the algorithm is given in Figure 5.4, where a simple point con-
figuration is segmented in only 3 iterations. At each step, a line shown in red indicates
the next segment in the list to be segmented, while segments in blue are a sign that
two successive clusters have been merged. The maximum distances from a point in a
cluster to the line segment related to that cluster are marked by dashed lines.

a) Split 1 c) Split 3 d) Mergeb) Split 2

Figure 5.4: Illustration of Split-and-Merge, the Iterative-End-Point-Fitting version. Splitting stage is
done in a), b) and c). In d), collinear segments are merged

5.3. Extraction of Line Features 37

5.3.2 Line Model Parameter Estimation

After the entire M-dimensional measurement space has been split into several Z clus-
ters (segments) of points belonging to the same line, a line fitting method based on
total least-squares is employed to estimate the line parameters [ρi

t αi
t]
>. To get a sense

for the desired fitting, an illustration is provided in Figure 5.5.

αi
t

ρi
t

O

ŷB

x̂B

pi
1

pi
ni

Si, li

Figure 5.5: Illustration of total least-squares line fitting to a cluster of points in the context of line
extraction

First, we need an expression for the distance from pi
h, the h-th point with local

Cartesian coordinates [xi
h yi

h]
> (notice that the ·t notation was dropped in this case

for convenience) belonging to segment Si, to a line l parameterized by [ρ α]>. The
derivation is quite straightforward once one becomes aware of the similarity between
this problem and the one discussed in Subsection 5.2.2. It is easily seen that the robot’s
body frame in Figure 5.5 is a substitute of the global frame in Figure 5.3, and a location
of the point in Figure 5.5 corresponds to the location of the robot in Figure 5.3. In
Subsection 5.2.2, we used simple geometry (see also Appendix A for details) to derive
an expression for ρi

t. We can use exactly the same approach to estimate the distance
we are seeking, due to the situations being essentially equivalent. The result is given
by Equation 5.10:

dist(pi
h, l) = |ρ− xi

h cos(α)− yi
h sin(α)| (5.10)

We also note that the aforementioned rectangular coordinates can be found from
the distance-angle information the sensor outputs if the simple equality in Equa-
tion 5.11 is used: [

xi
h

yi
h

]
=

[
di

h cos(φi
h)

di
h sin(φi

h)

]
=

[
u1(di

h, φi
h)

u2(di
h, φi

h)

]
(5.11)

The squared sum E(ρ, α) of all the distances from each of the ni points to the line
li has to be minimized to get the feature vector associated with the line. This is the
well-known total least-squares constrained optimization inquiry, stated formally in
Equation 5.12:

38 Chapter 5. Modeling

[
ρi

t
αi

t

]
=

[
ρ∗
α∗

]
= argmin

ρ,α
E(ρ, α) =

ni

∑
h=1

[ρ− xi
h cos(α)− yi

h sin(α)]2 (5.12)

The preceding problem has been proven to have the closed-form solution (see [77,
80, 81, 82, 83]) given by Equation 5.13:

[
ρ∗

α∗

]
=

[
xi cos(α∗) + yi sin(α∗)

1
2 arctan 2(−2Si

xy, Si
y2 − Si

x2)

]
=

[
v1(xi

1, yi
1, . . . , xi

ni
, yi

ni
)

v2(xi
1, yi

1, . . . , xi
ni

, yi
ni
)

]
(5.13)

where we utilize the notation given by Equation 5.14:

xi =
1
ni

ni

∑
h=1

xi
h yi =

1
ni

ni

∑
h=1

yi
h

Si
x2 =

ni

∑
h=1

(xi
h − xi)2 Si

y2 =
ni

∑
h=1

(yi
h − yi)2

Si
xy =

ni

∑
h=1

(xi
h − xi)(yi

h − yi)

(5.14)

It is worth mentioning that if the solution given in Equation 5.13 produces ρi
t < 0,

then the true line parameters are [−ρi
t αi

t + π]> [81]. Notice also that the optimal
distance ρi

t from the origin of the local frame to the line li given in Equation 5.13
shows that the mean of all the points in Si belongs to the fitted line and it is in fact
the point closest to the origin of the body frame.

Once a line is fitted to a specific segment of scanned points, a finite line section (a
segment, in the geometrical sense) can be further chosen for visualization purposes.
This is very useful in building maps that are easier to understand for humans. The
details of the necessary steps needed for such a representation are explored in Ap-
pendix A.

5.3.3 Line Feature Covariance Estimation

In the preceding section, it was demonstrated that the two parameters representing a
line feature in the robot-centered reference frame can be computed analytically given
raw sensor measurements grouped based on Split-and-Merge. Sensors are imperfect,
and thus, in practice, for any of the line feature zi

t, i ∈ {1, . . . , Z}, each and every
scanned point pi

h(d
i
h, φi

h), h ∈ {1, . . . , ni} is actually subjected to uncertainty. There-
fore, the equations shown in the extraction process actually apply to random Gaussian
variables. However, they are of course valid for the expected values of those variables.
We can think of the measurements as the means of the Gaussian RVs representing the
range and bearing of points in the environment, and in order to avoid additional no-
tation we shall utilize the same symbols for the random variables and their expected
(measured) values.

5.3. Extraction of Line Features 39

What we desire at this juncture is to identify the covariance Ri
t of a certain feature

zi
t. The form of the the matrix is given in Equation 5.15:

Ri
t =

[
σ2

ρ σρσα

σασρ σ2
α

]
(5.15)

This matrix is essentially obtained by fusing the covariances of all the points be-
longing to the same line feature. The problem we are dealing with is known as error
propagation and arises when multiple uncertain measurements need to be combined
[80].

Following the derivations done in [77] and the observations in [80, 84], the map-
ping we are looking for is obtained if the Cartesian coordinate covariance matrices
of individual points are known. For the h-th point of the i-th feature, this matrix is
denoted as C i

h. An illustration of the covariance propagation is available in Figure 5.6,
which shows again the idea behind total-least-squares fitting in Figure 5.5, but this
time the covariances of the points and the covariance of the line feature are explicitly
shown as ellipses.

αi
t

ρi
t

O

ŷB

x̂B

Si, li

pi
h

C i
h Ri

t

Figure 5.6: Illustration of error propagation for total-least-squares line fitting

Some of the points of the original figure have been removed to make room for the
depiction of the line covariance. It should be emphasized that the ellipses plotted are
meant to only convey an idea of uncertainty to the reader, and may not represent a
reliable indicator of the covariance values in reality. Similarly, the fact that all points
have the same covariance in the figure is not to be understood as if that should be the
case in a practical setting.

Now, given the distinct uncertainties of the points in a segment, a line feature’s
covariance matrix Ri

t is obtained from Equation 5.16:

Ri
t =

ni

∑
h=1
Ai

hC i
h[Ai

h]
> (5.16)

in which Ai
h is the Jacobian matrix - taken with respect to the h-th point and

40 Chapter 5. Modeling

evaluated at its mean3 - of the vector function v, with the element functions4 given in
Equation 5.13. From [77], Ai

h is as shown in Equation 5.17:

Ai
h =

 ∂v1
∂xi

h

∂v1
∂yi

h
∂v2
∂xi

h

∂v2
∂yi

h

xi

h, yi
h

=

[
A11 A12
A21 A22

]
(5.17)

where we evaluate the entries separately, in Equation 5.18 [77]:

A11 =
cos(αi

t)

ni
−A21(xi sin(αi

t)− yi cos(αi
t))

A12 =
sin(αi

t)

ni
−A22(xi sin(αi

t)− yi cos(αi
t))

A21 =
(yi − yi

h)(S
i
y2 − Si

x2) + 2Si
xy(xi − xi

h)

(Si
y2 − Si

x2)2 + 4(Si
xy)

2

A22 =
(xi − xi

h)(S
i
y2 − Si

x2) + 2Si
xy(y

i − yi
h)

(Si
y2 − Si

x2)2 + 4(Si
xy)

2

(5.18)

However, the sensor gives readings in polar coordinates, not in Cartesian, and
therefore C i

h is unknown and it must be obtained from the covariance matrix of the
polar coordinates for a single point. We label this matrix Di

h and show its contents in
Equation 5.19, assuming that distance and angle are independent and hence uncorre-
lated:

Di
h =

[
σ2

di
h

0

0 σ2
φi

h

]
(5.19)

This new mapping is completed by writing C i
h as shown in Equation 5.20:

C i
h = Bi

hDi
h[Bi

h]
> (5.20)

where the Jacobian Bi
h of the vector function u, with the element functions given

in Equation 5.11, was taken with respect to the h-th point and evaluated at its mean.
The entries of this Jacobian are shown in Equation 5.21:

Bi
h =

 ∂u1
∂di

h

∂u1
∂φi

h
∂u2
∂di

h

∂u2
∂φi

h

di

h, φi
h

=

[
cos(φi

h) −di
h sin(φi

h)
sin(φi

h) di
h cos(φi

h)

]
(5.21)

3We remind the reader again that in this subsection we use the same notation for a random variable
and its expected value

4The vector functions u and v and their element functions should not be confused with the control
vector ut or the translational speed vt

5.3. Extraction of Line Features 41

Finally, substituting Equation 5.20 into Equation 5.16 yields Equation 5.22, which
provides a means of computing the covariance associated with a line from the indi-
vidual covariances of its element points:

Ri
t =

ni

∑
h=1
Ai

hBi
hDi

h[Ai
hBi

h]
> (5.22)

5.3.4 Split-and-Merge Implementation with LiDAR

The mechanics and implications of the Split-and-Merge algorithm have already been
elucidated upon in the previous sections. However, there is merit to this discussion
only if the said algorithm provides the desired result for the actual sensory data.

In order to obtain the data points from the range finder we utilize ROS. In the
present situation, ROS usage is limited to a single publisher and subscriber. As ex-
pected, the LiDAR node plays the role of a publisher, publishing the data points over
the topic and a subscribing node is enacted which receives the information. The sub-
scriber then feeds those points into the Split-and-Merge algorithm. For the purpose
of testing the algorithm, the scenario employed is kept simple, with just the LiDAR
scanning the walls and other surrounding objects inside a room that fall within its
plane of rotation. The incoming data from the LiDAR comprise the distance to the
scanned surfaces (range) and the angle of rotation corresponding to those distances.
Accordingly, through this information, a scanned point can be represented using the
polar coordinate system or can easily be converted into its Cartesian counterpart. As
such, from the scan, the points for a single rotation of the LiDAR are shown in the
left graph in Figure 5.7. Due to their large number, the points altogether might look
like lines themselves, but still are distinctly placed. The output of the Split-and-Merge
algorithm is shown in the right half of Figure 5.7.

On side by side comparison of the right and left halves of Figure 5.7, the differ-
ence is instantly recognizable. The identifiable point cluster from the left half are now
replaced by the line segments in the right half. From the results of this small experi-
ment, it suffices to say that the outcome of the Split-and-Merge algorithm is up to the
expectations and thus suitable for inclusion in the upcoming intricate processes.

5.3.5 LiDAR Noise Distribution

The analysis in Subsection 5.3.3 was exclusively focused on identifying the covairance
matrix Ri

t of a certain feature. The significance of this covariance will become more
apparent in the later sections. As such, an expression was presented to calculate
Ri

t, however, the said expression (given in Equation 5.22) is reliant on the covariance
matrix Di

h. The matrix Di
h is essentially governed by the noise distribution over

the measurements of the LiDAR sensor. Therefore, an experiment was performed to
acquire the corresponding noise distribution. Before we proceed further, it should be
notified that the experiment was conducted using a simulated LiDAR sensor within

42 Chapter 5. Modeling

Figure 5.7: Split-and-Merge algorithm implementation in a test area. Left: Raw LiDAR points from the
test area. Right: Point Clusters Converted to Points

Gazebo5. The details of the simulated sensor and the platform will be made clear
later in Chapter 8.

The Di
h matrix requires the variance of both range and bearing measurements

from the sensor. Having said that, the LiDAR sensor only provides the bearing data
in terms of a constant angular increment, therefore it can be assumed that the variance
for the angles is zero (i.e. σ2

φ = 0). As for the range measurements, the experiment
was a simple task of obtaining multiple distance readings for the same scanned point.
As a result, the acquired measurements could be plotted as histograms and are shown
in Figure 5.8. It should be evident that the shape of the histogram plot is emulating a
Gaussian distribution. Therefore, a normal distribution curve is fitted to the histogram
(shown by the red line in Figure 5.8). Hence, by extracting the standard deviation (σd)
of this normal distribution, we can calculate the variance for range measurements.

The experiment done here is only for one of many points that a LiDAR can scan.
Therefore, it is possible that variance might change for points at different distances,
depending on the specifications of the LiDAR sensor. Moreover, conducting experi-
ment for each point is non-viable, hence we will be operating under the assumption
that all LiDAR points have the same covariance matrix D, as shown in Equation 5.23.

D =

[
σ2

d 0
0 σ2

φ

]
=

[
1.055 · 10−4 0

0 0

]
(5.23)

5.4 The Data Association Problem

One of the main obstacles in the way of developing and implementing localization and
mapping algorithms goes by the name of the data association problem (also known

5The procedure for the actual LiDAR sensor would remain the same.

5.4. The Data Association Problem 43

Figure 5.8: Histograms and probability density functions of the LiDAR measurements with mean value
subtracted

as the correspondence or matching problem) [6, 7, 77]. If the landmarks the robot is
using to estimate its position in the environment cannot be uniquely identified, then a
question arises regarding the identity of a landmark given an observed feature. More-
over, [6] avers the following: "The standard formulation of the EKF-SLAM solution is
especially fragile to incorrect association of observations to landmarks".

Remember that the equations and explanations provided in Section 5.2 are based
on the presumption that the i-th extracted feature corresponds to the j-th landmark
in the map. In reality, we need a means for going from assumption to verifiable
certainty. Let us introduce a correspondence variable ci

t, i ∈ {1 . . . Z} linking the
feature zi

t with a certain landmark. Supposing that at time t the map comprises N
landmarks, we have that ci

t = j ∈ {1 . . . N}, if the feature is found to correspond to
an already-existing landmark mj. If, however, ci

t = N + 1, the i-th feature is found to
not correspond to any of the recorded landmarks and therefore it is interpreted as an
unobserved landmark and it is appended to m, N being updated accordingly.

The correspondences are crucial in the context of robot localization and mapping,
because landmarks are essentially the only information the vehicle can ever possess
about the surroundings. Hence, ensuring accurate position estimation is tightly con-
ditioned on the correct identification of landmarks. As explained, the robot should be
able to either correctly assign features sightings to previously observed landmarks or,
on the contrary, decide that a feature should be elevated to the rank of new landmark.

Solutions for tackling the matching problem will be discussed in Chapters 6 and 7.

Chapter 6

Localization

Mobile robot localization is arguably the most fundamental problem in the world
of robotic perception [7, 78]. Furthermore, in the endeavour of implementing

SLAM, localization represents the prime milestone. It is for these reasons why it was
found appropriate to dedicate an entire chapter of the report to this central aspect.
What is referred to as localization in this report is in fact the position tracking prob-
lem, in which the initial pose is relatively well known. Multimodal distributions of
random variables are required for performing the more general global localization,
which is not possible with the Gaussian-reliant EKF utilized here.

6.1 Definition of the Localization Problem

The robot localization problem can be graphically summarized in a diagram such as
the one in Figure 6.1. The shaded nodes correspond to values that are known, namely,
the controls, the measurements and the map, while the arrows depict the influences
and dependencies existing between the variables in the system. The objective in lo-
calization is to deduce the next pose in the global reference frame, with respect to the
map (see the non-dashed bubbles).

xt−1 xt xt+1

m

utut−1 ut+1

zt+1zt−1 zt

Figure 6.1: Graphical model of the localization problem

44

6.2. Mathematical Derivation 45

From a mathematical standpoint, the goal of localization is the estimation of the
present pose xt+1 of the robot, while having access to knowledge regarding the
present and all the past controls u1:t+1 and measurements z1:t+1. The vehicle also
has complete awareness of the full map m. Probabilistically, the conditional PDF
p(xt+1 | xt, u1:t+1, z1:t+1, m) needs to be identified at every time step t.

This definition accurately conveys the aim of robot position estimation, but only in
the case when the current feature-to-map data associations ct+1 have been identified
or are known a priori. With no knowledge of the correspondence variables, a small
amendment can be made to the density function just mentioned, so that the necessity
of discovering the right matchings is not ignored. The new sought PDF is the joint
conditional p(xt+1, ct+1 | xt, u1:t+1, z1:t+1, m).

6.2 Mathematical Derivation

Prediction Step

Referring back to Section 4.2, the EKF localization starts with the computation of the
predicted state estimate µt and the predicted estimate covariance Σt. The function
responsible for the state transition is the motion model in Section 5.1, which has as
one of its arguments the zero-mean noise vector εt. The standard extended Kalman
filter represents noise as an additive vector and, therefore, slight modifications of
the EKF prediction equations are required. The new expressions can be deduced by
rewriting the first-order Taylor linearization of g at µt−1, ut and 0, and including the
differentiation with respect to the noise (see Equation 6.1) [72, 85, 86].

g(ut, xt−1, εt) ≈ g(ut,µt−1, 0) +
∂g(ut, xt−1, εt)

∂xt−1
(xt−1 − µt−1) +

∂g(ut, xt−1, εt)

∂εt
εt

≈ g(ut,µt−1, 0) + Gt(xt−1 − µt−1) + Ltεt

(6.1)

The differentiations are of course evaluated at the linearization point. With this
new linearized state space, it can be proven (see [85]) that prediction should be per-
formed according to Equations 6.2 and 6.3:

µt = g(ut,µt−1, 0) (6.2)

Σt = GtΣt−1G>t + LtQtL
>
t (6.3)

Equation 6.4 shows the Jacobian of the nonlinear process function g(ut, xt−1, εt),
evaluated at ut, µt−1 and 0:

46 Chapter 6. Localization

Gt =
∂g(ut, xt−1, εt)

∂xt−1

∣∣∣∣
ut, µt−1, 0

=

1 0 vt

ωt
(− cos(θ) + cos(θ + ωt∆t))

0 1 vt
ωt
(− sin(θ) + sin(θ + ωt∆t))

0 0 1

 (6.4)

It should be noted that we let θ = µt−1,θ in the preceding expression to simplify
the notation. We shall keep this convention throughout the rest of the chapter.

The non-additive noise lies embedded in the process function and contributes to
obtaining the actual, noise-corrupted velocities from the noise-free commanded ones.
We can restate the formula in Equation 5.3 as in Equation 6.5: v̂t

ω̂t
γ̂t

 =

vt
ωt
0

+N (0, Qt) (6.5)

in which Qt is the state transition covariance matrix in the control space (see [7]),
having the form in Equation 6.6:

Qt =

α1v2
t + α2ω2

t 0 0
0 α3v2

t + α4ω2
t 0

0 0 α5v2
t + α6ω2

t

 (6.6)

The right-most term in the new predicted covariance estimate formula (Equa-
tion 6.3) can be interpreted as an additional calculation required to map the noise
from the control space to the state space and make the model suitable for EKF im-
plementation [7]. As observed, this is done through a linear approximation utilizing
the Jacobian Lt, with respect to the noise, of the motion function. The contents of this
matrix are listed in Equation 6.7:

Lt =
∂g(ut, xt−1, εt)

∂εt

∣∣∣∣
ut, µt−1, 0

=

− sin(θ)+sin(θ+ωt∆t)

ωt

vt(sin(θ)−sin(θ+ωt∆t))
ω2

t
+ vt∆t cos(θ+ωt∆t)

ωt
0

cos(θ)−cos(θ+ωt∆t)
ωt

− vt(cos(θ)−cos(θ+ωt∆t))
ω2

t
+ vt∆t sin(θ+ωt∆t)

ωt
0

0 ∆t ∆t

(6.7)

Update Step

The Kalman filter demands the existence of a single measurement vector zt that can
be modelled stochastically based on a known mathematical representation p(zt |
xt, ct, m). However, it should be evident from the discussion in Section 5.2 that zt
is actually a concatenation of multiple features denoted zi

t (Equation 5.7), and the

6.2. Mathematical Derivation 47

described observation model concerns only individual measurements, that is, Equa-
tion 5.9 gives p(zi

t | xt, ci
t, m). To use the standard EKF, additional assumptions are

needed when processing multiple measurements at the same time. In a static environ-
ment, a reasonable assumption that is very helpful in addressing the introduced issue
is that of conditional independence of measurement probabilities. According to [78,
87], the assumption holds as long as the noise in one measurement is independent of
the noise in any other feature. Following the definition of conditional independence
given in [88], the expression in Equation 6.8 results:

p(zt | xt, ct, m) = ∏
i

p(zi
t | xt, ct, m) = ∏

i
p(zi

t | xt, ci
t, m) (6.8)

The supposition allows features extracted from the sensor information to be in-
cluded in the Kalman update step in a an incremental fashion. This is desirable,
since implementation can now be carried out by looping through the feature vector in
software, and integrating each feature individually into the filter [7].

We can now safely start analyzing the EKF update stage by looking at the i-th
feature only. Equation 6.9 gives the Jacobian of the observation model (Equation 5.9)
required in the EKF linearization presented in Equation 4.18:

Hi
t =

∂h(xt, j, m, κ)

∂xt

∣∣∣∣
µt, j, m

=

[
(−1)κ cos(ψj) (−1)κ sin(ψj) 0

0 0 −1

] (6.9)

Choosing the value of κ should be as per the observation made in Subsection 5.2.2.
The covariance matrix Ri

t of the measurement is obtained according to Equation 5.22,
discussed in the last part of Section 5.3.

Additionally, taking inspiration from as done in [80], it is convenient to introduce
here some new notation. In particular, ẑi

t will be used to refer to the expected mea-
surement that is calculated based on the observation model, while Si

t will denote the
innovation covariance matrix needed in computing the optimal Kalman gain, meaning
that it will be computed as in Equation 6.10:

Si
t = Hi

tΣt[Hi
t]
> + Ri

t (6.10)

It should be mentioned that it is crucial to update the a priori state estimate µt and
the a priori estimate covariance Σt at every iteration of the update stage, according
to the last two equations of the extended Kalman filter. The explanation is that every
landmark sighting gives the robot more information regarding its position within the
map.

48 Chapter 6. Localization

6.3 Data Association

One should keep in mind that, in reality, the correspondences ci
t are rarely known

with absolute certainty prior to the deployment of the algorithm. More often that
not, they have to be determined along the localization process. This is precisely the
matching problem briefly introduced in Section 5.4, where the importance of correct
data associations has been emphasized.

6.3.1 Maximum Likelihood Association

As maintained by the authors of [7, 89, 90], the most straightforward way to tackle
this issue goes by the name of maximum likelihood correspondence and is aiming to
maximize the data likelihood p(zt | c1:t, m, z1:t−1, u1:t). Continuing with the assump-
tion of feature independence, maximization of the preceding PDF is equivalent to the
maximization of the density functions corresponding to individual extractions zi

t, as
stated in Equation 6.11, whose proof is discussed in [7]. The result of the optimization
is the best correspondence ĉi

t:

ĉi
t = argmax

ci
t

p(zi
t | c1:t, m, z1:t−1, u1:t)

≈ argmax
ci

t

N (zi
t; h(µt, ci

t, m), HtΣH>t + Ri
t)

≈ argmax
ci

t

N (zi
t; ẑi

t, Si
t)

(6.11)

For each zi
t extracted at a given time, the EKF localization algorithm shall loop

through all the landmarks in m and evaluate and store the expected measurement
and the innovation matrix at every iteration k. Equation 6.11 comes into play when
the probability densities are being compared, at the end of the aforementioned loop.
Thus, the best association ĉi

t is the index j(i), which is precisely computed through
Equation 6.12 [7, 89]:

j(i) = argmax
k

1√
det (2πSk

t)
exp

(
−1

2
(zi

t − ẑk
t)
>[Sk

t]
−1(zi

t − ẑk
t)

)
(6.12)

An equally valid metric, though less computationally cumbersome, is the mini-
mization of the normalized distance Dik. When this is done, the matching technique
is referred to as nearest neighbour associations [89, 90]. Following the directions given
in Appendix B, we get the optimization requirement in Equation 6.13:

j(i) = argmin
k

Dik = argmin
k

(zi
t − ẑk

t)
>[Sk

t]
−1(zi

t − ẑk
t) + ln (det Sk

t) (6.13)

6.3. Data Association 49

6.3.2 Validation Gating

It is widely accepted in the literature that even the simplest form of matching in
localization or SLAM is actually a two-step process (see [80, 89, 90, 91]). Solely con-
sidering the most likely data association, found through either of the two preceding
formulas, would overlook the issue of spurious measurements. In the case of un-
foreseen changes in the map (e.g.: sudden appearance of a new object) or sensor
malfunction (e.g.: extraction of an absurd feature), an association would still be se-
lected, even though the sensor observation is not related to the known map in reality.
As a preventive measure, validation gating is introduced first, eliminating the statis-
tically unlikely associations before the best candidate is chosen. In fact, an approach
such as maximum likelihood is considered only an ambiguity management method,
while validation gating is regarded as an ambiguity reduction scheme. While neither
method should be independently utilized for acceptable selection of correspondences,
when combined, they complement each other and offer a fairly straightforward solu-
tion to a very convoluted problem [89, 90].

Let us now elaborate on the concept of validation gating. The normalised inno-
vation squared strategy, alternatively called Mahalanobis distance, is a ubiquitous
validation gate that dictates the maximum allowable disparity, in the measurement
space, between an extracted feature zi

t and a landmark mk. In the context of our
discussion, the squared Mahalanobis distance between the random vector zi

t and the
mean ẑi

t of the observation multivariate Gaussian distribution has the form presented
in Equation 6.14 [90, 92]:

Mik = (zi
t − ẑk

t)
>[Sk

t]
−1(zi

t − ẑk
t) (6.14)

As observed, the preceding equation can be used to gauge, through Mik, the sim-
ilarity between an actual (i-th) measurement and the measurement likelihood of any
k-th landmark. The resulting number is subsequently compared to a predefined gate
threshold γ1, and the measurement is accepted for association only if the squared
Mahalanobis distance does not exceed the threshold [89, 90].

For each landmark, this validation principle allows potential correspondences only
with measurements falling within the area Areak defined by Equation 6.15:

Areak = {zi
t | (zi

t − ẑk
t)
>[Sk

t]
−1(zi

t − ẑk
t) ≤ γ1} (6.15)

which, in our case, represents an ellipse in the two-dimensional observation space,
as shown in the left side of Figure 6.2. The rationale why validation gating is not
guaranteed to provide unequivocal data association is apparent from the right side of
the same figure. While no measurement outside the yellow acceptable areas is taken
into consideration, ambiguity arises when a single measurement falls within more
than one gate (see that z2

t is in both the right and the left ellipses) or when there are
multiple observations within the same validation gate (notice that z1

t and z2
t are both

in the left ellipse).

50 Chapter 6. Localization

z1
t

ẑ2
tẑ1

t

z2
tzi

t

ẑk
t

Mik

Mik = γ1

M21
M11 M12

Figure 6.2: Left: Graphical representation of the validation gate; Right: Ambiguity in data association

The first of the aforementioned problems is solved by applying the nearest neigh-
bour association (Equation 6.13). The latter, however, is much more difficult to deal
with, due to the incremental structure of the algorithm: features are compared to
all landmarks one at a time. In theory, always choosing the nearest neighbor could
lead to assigning multiple observations to the same landmark, whereas the features
may actually correspond to different locations is space. To prevent the confusion, it
was decided to not associate an observation to its nearest map element if a previous
measurement has been already associated with the same map element. The closest
previously unassociated landmark, if any, will be utilized for correspondence.

For implementation, a specific value of the gate γ1 should be selected based on
reasoning. It can be shown that, for a multivariate Gaussian distribution, the squared
Mahalanobis distance, if treated as a random variable, is χ2-distributed (the proof is
not very relevant and is quite complex; it can be found in [93]). Such distributions
depend on the number of degrees of freedom, which are really just the dimensions of
the random vector for which the Mahalanobis distance has been computed, so 2 in our
case (remember zi

t is comprised of a distance and an angular parameter). Figure 6.3
depicts the PDF of a χ2-distribution for a continuous random variable X and 2 degrees
of freedom:

Figure 6.3: Plot of the PDF of a χ2-distribution with 2 degrees of freedom

The value of the validation gate will determine the probability that, if an observa-

6.3. Data Association 51

tion zi
t is an actual measurement of the k-th landmark, a potential association between

the two is allowed. This probability is the area under the curve in Figure 6.3, between
0 and γ1. A common choice in the literature is γ1 = 6, for which almost 95% of the
true associations are accepted [90] (other authors use 9 [94]).

6.3.3 Correspondence Enhancement for Line Features

In the particular instance of using lines for robot localization, associating only based
on validation gating and nearest neighbour, as described thus far, may not lead to
successful matching. That is because the k-th line landmark is stored in the map as
[rk ψk]

>, creating additional ambiguity when multiple lines lie on the same line (that
is, they form an interrupted line). Imagine, for example, the ubiquitous real-world
indoor scenario of a corridor between two aligned walls. The walls, although situated
at distinct locations in space, will be represented through very similar distance and
angle parameters. When a feature that should be matched to the first wall is extracted
by the sensor, an assignment of the feature to the second wall could be performed
instead due to noise. The wrong assignment has detrimental effects on the localization
process [77, 94].

An enhancement to the correspondence stage can be done in a similar fashion to
what the authors of [77] propose. For localization, the midpoints of collinear land-
marks have unique known global-frame Cartesian coordinates and thus they could
be stored and utilized as an additional tool in the association process1. In Figure 6.4,
the challenge of selecting an association for collinear landmarks is depicted. If the
robot would be aware of the locations of the midpoints for the feature and the two
landmarks, it would correctly select the orange line, and not the purple one, as the
map element "closest" to the extracted segment.

Our objective is to define a new metric that can be calculated for each feature-
landmark pair and can aid us in making a decision for assigning observations to map
elements. Because we can find such a metric using concepts already discussed in
detail in this thesis, we shall skip the definitions and proofs and focus on the results.

In Equation 6.16, a slightly modified measurement model for point features is
given. An observation zi

t,mid of a feature’s midpoint is modeled as a function of the
robot’s pose and the location of the landmark midpoints mk,mid = [xk,mid yk,mid]

>,
with k ∈ {1, . . . , N}:

zi
t,mid = hmid(xt, k, mmid) + δt,mid[

ρi
t,mid

αi
t,mid

]
=

[√
(xk,mid − xt)

2 + (yk,mid − yt)
2

arctan2(yk,mid − yt, xk,mid − xt)− θt

]
+

[
δσ2

ρmid
δσ2

αmid

]
(6.16)

The Jacobian of this measurement model with respect to the pose and evaluated
at the mean can be found in Equation 6.17:

1By "midpoint" we here refer to the average location of all the points in an extracted segment Si

52 Chapter 6. Localization

ρ1
t

ŷB x̂B

x̂GO

ŷG

α1
t

r1

ψ1

m1 = m2

Figure 6.4: Illustration of the matching ambiguity arising due to landmark collinearity. An enhance-
ment consists of utilizing the midpoint of the features and landmarks for data association

Hk
t,mid =

∂hmid(xt, k, mmid)

∂xt

∣∣∣∣
µt, k, mmid

=

−
xk,mid−µt,x√

(xk,mid−µt,x)
2+(yk,mid−µt,y)

2
− yk,mid−µt,y√

(xk,mid−µt,x)
2+(yk,mid−µt,y)

2
0

yk,mid−µt,y
(xk,mid−µt,x)

2+(yk,mid−µt,y)
2 − xk,mid−µt,x

(xk,mid−µt,x)
2+(yk,mid−µt,y)

2 −1

 (6.17)

Let the rectangular coordinates of the midpoint of the i-th observed feature be
[xi yi]>. This is obtained from the sensor measurements, on which Split-and-Merge
is executed. The local polar coordinates representing zi

t,mid are computed through
Equation 6.18: [

ρi
t,mid

αi
t,mid

]
=

[√
[yi]2 + [xi]2

arctan2(yi, xi)

]
=

[
υ1(xi

1, yi
1, . . . , xi

ni
, yi

ni
)

υ2(xi
1, yi

1, . . . , xi
ni

, yi
ni
)

]
(6.18)

For the midpoint covariance which we label Ri
t,mid, error propagation applied in

the preceding relation leads to Equation 6.19:

Ri
t,mid =

ni

∑
h=1
Ai

h,midBi
hDi

h[Ai
h,midBi

h]
> (6.19)

with the Jacobian Ai
h,mid shown in Equation 6.20:

Ai
h,mid =

 ∂υ1
∂xi

h

∂υ1
∂yi

h
∂υ2
∂xi

h

∂υ2
∂yi

h

xi

h, yi
h

=

 xi

ni

√
[yi]2+[xi]2

yi

ni

√
[yi]2+[xi]2

− yi

ni([yi]2+[xi]2)
xi

ni([yi]2+[xi]2)

 (6.20)

6.4. EKF Localization Algorithm 53

The normalized distance between midpoints is represented by Equation 6.21:

Dik,mid = (zi
t,mid − ẑk

t,mid)
>[Sk

t,mid]
−1(zi

t,mid − ẑk
t,mid) + ln (det Sk

t,mid) (6.21)

in which one shall utilize the midpoint innovation covariance Sk
t,mid, having the

expression in Equation 6.22:

Sk
t,mid = Hk

t,midΣt[Hk
t,mid]

> + Ri
t,mid (6.22)

The maximum likelihood data association policy from Subsection 6.3.1 can be
modified to include the midpoints. Accordingly, the minimization for the nearest
neighbor will be applied to the weighted sum Sw,ik of Dik and Dik,mid, as indicated by
Equation 6.23:

j(i) = argmin
k

Sw,ik = argmin
k

w1Dik + w2Dik,mid (6.23)

6.4 EKF Localization Algorithm

Algorithm 2 illustrates the discussed EKF localization with unknown data correspon-
dences. The map m consists of N stationary line landmarks, the extraction of features
from sensory data is done according to Algorithm 1 and the estimation of line param-
eters is precisely carried out as specified in Section 5.3. The zt in the prototype of the
functions denotes the full measurement information the sensor supplies. Notice that
some of the formulas appearing in the mathematical derivation are not restated in the
algorithm.

6.5 Simulation of EKF Localization

In order to evaluate the correctness and the performance of the devised localization
algorithm complemented with the midpoint tracking feature, a simple test bench en-
vironment that imitates real world characteristics such as imperfect motion, sensor
noise and limited LiDAR vision has been developed in Python. With continuous
testing and improvement of the Algorithm 2, coded in Python as well, done in this
custom built environment, the code has been debugged and satisfactory results high-
lighting successful implementation and execution of the mentioned algorithm have
been obtained. In spite of the fact that localization alone is not an application that we
are going to implement and test in the real world, we regard it as a milestone achiev-
ing which will take us a step closer to solving the SLAM problem in the consecutive
chapters. It is also important to mention that this simulation has served us as a tool
to verify and improve other elements of the system, such as the feature extraction
algorithm. Once more, the reader should note that this test bench has been developed
for the sole purpose of debugging the code and endorsing the devised localization

54 Chapter 6. Localization

Algorithm 2: EKF Localization with Unknown Correspondences

1 EKF_Localization(µt−1, Σt−1, ut, zt, m):
2 Compute Gt, Lt and Qt;

3 µt = µt−1 +

− vt
ωt

sin(µt−1,θ) +
vt
ωt

sin(µt−1,θ + ωt∆t)
vt
ωt

cos(µt−1,θ)− vt
ωt

cos(µt−1,θ + ωt∆t)
ωt∆t

;

4 Σt = GtΣt−1G>t + LtQtL>t ;
5 Extract all the visible line features zi

t and compute the midpoints zi
t,mid;

6 Compute the line covariances Ri
t and the midpoint covariances Ri

t,mid;
7 for all extracted features zi

t = [ρi
t αi

t]
>, from i = 1 to i = Z do

8 for all landmarks in m, from k = 1 to k = N do
9 Find the value of κ to decide the correct measurement model;

10 ẑk
t =

[
(−1)κ(−rk + µt,x cos(ψk) + µt,y sin(ψk))

ψk − µt,θ + (1− κ)π

]
;

11 Hk
t =

[
(−1)κ cos(ψk) (−1)κ sin(ψk) 0

0 0 −1

]
;

12 Sk
t = Hk

t Σt[Hk
t]
> + Ri

t;
13 Follow a similar procedure for ẑi

t,mid, Hk
t,mid and Sk

t,mid;
14 Compute Mik. If Mik > γ1, discard Mik;
15 Calculate Sw,ik;
16 end
17 Find j(i), the correspondence of the nearest unmatched neighbor of zi

t;
18 if j(i) exists then
19 Ki

t = Σt[H
j(i)
t]>[Sj(i)

t]−1;

20 µt = µt + Ki
t(z

i
t − ẑj(i)

t);

21 Σt = (I−Ki
tH

j(i)
t)Σt;

22 end
23 end
24 µt = µt;
25 Σt = Σt;
26 return µt, Σt;

algorithm before proceeding further towards tackling the SLAM problem. The results
achieved have made sure that the localization algorithm is functional on its own and
necessary amendments can be made to address the SLAM problem in later chapters.

6.5. Simulation of EKF Localization 55

6.5.1 Simulation Setup

Before demonstrating the achieved results, a subsection explaining the test bench
setup has been considered appropriate to familiarize the reader with the robot and
environment specifications that were simulated. The reader should note that this sub-
section is equally important and valid for the simulation of EKF SLAM in Section 7.6
and no other preamble will be given later again.

First and foremost, a 2D point cloud representation of an 13 m by 8 m indoor
environment with nine identical 0.25 m2 square objects consisting of 4680 points is
digitally obtained. Considering the existing objects in the environment with each
having four sides and the four walls of the room, the map consists of 40 line landmarks
in total. This imaginary environment is shown in Figure 6.5. As one might think,
the placement of the square objects in the figure is not arbitrary. In fact, they are
purposefully positioned in the given configuration to introduce five pairs of collinear
landmarks, thus giving us the opportunity to check if the midpoint tracking extension
added to the localization algorithm to enhance the data association really augments
the number of correct correspondences done during the execution of the program.

Figure 6.5: A Snapshot of The 2D Simulation Test Bench Environment Showing The Trajectory of The
Robot With The Extracted Features And Acquired Correspondences

A closer look at Figure 6.5 reveals other important elements of the simulation as
well. One of the first aspects one notices at the first glance is the three robot trajectories
plotted in different colors and line styles. The solid orange path is based on the
motion model given in Section 5.1 and is calculated with the assumption that the given
control input u at each iteration is executed perfectly by the robot. It is an idealistic
assumption and thus obviously a wrong way to estimate the robot trajectory, therefore
the discrepancy with the other two routes. It is still included in the simulation to
illustrate the necessity of EKF in accurate pose estimation.

56 Chapter 6. Localization

The solid line in lime color is the true trajectory that the robot follows. It is again
computed using the motion model, but this time with added noise on the control
inputs, simulating imperfect motion execution of a real agent. Even though the dif-
ference between the true and motion model trajectories is indistinguishable when the
simulation first starts, they diverge from each other more and more as a result of the
continuous noise integration at each time step. Regarding the added noise on lin-
ear and angular velocity commands, they were randomly picked from two different
Gaussian distributions about zero with the first one having 0.0125 and the other 0.01
standard deviation. The added noise characteristics were thoughtfully determined
with the aim of simulating a realistic robot motion. Considering the 1Hz update
rate of the simulation (a time period long enough for EKF localization algorithm to
complete one iteration) that points out execution of the given velocity commands for
one second, it is plausible to assume that the motion of a vehicle in the real world
might be 5 cm off of the actual position in x and y axis and 0.05 rad (3◦) off of the
actual heading for velocity commands of 0.25 m/s and 0.5 rad/s (29◦/s). This level
of inaccuracy in motion is equal to 20% error. The previously mentioned noise char-
acteristics also model similar levels of uncertainty for our fictitious robot. They reflect
the possibility of it actually being within a 6 cm circular range of 5σ-bound for the
mentioned linear velocity command and within the 0.05 rad (2.9◦) range of 5σ bound
for the said angular velocity command. The additional angular-velocity-like noisy pa-
rameter γ̂t, that is included in ut as a third element to compensate for the constrained
final heading of the robot as a consequence of the circular motion, is picked from a
random distribution with 0.005σ around zero mean. These noise characteristics were
ultimately utilised in the simulation.

Considering the fact that we know the level of noise on the control inputs (since
we put it ourselves in the simulation), there was no need to tune the robot-specific
error parameters αi, i ∈ {1, . . . , 6} given in Equation 5.3. Furthermore, it was tried
to increase the noise magnitude more to obtain a larger discrepancy between the
true and ideal motion trajectories in order to obtain a less accurate state transition
belief through the deterministic motion model and to test the performance of the EKF
localization algorithm under such conditions. However, this was rendered impossible
as more noise added on u have led to a more unpredictable motion of the agent that
was no longer constrained within the dimensions of the custom built environment
since there was no measure in the simulation to not let it go through the square
objects or the outer walls.

Last but not least, the dashed line colored in magenta depicts the trajectory es-
timated by EKF localization algorithm. The current pose of the vehicle for all three
trajectories are illustrated via three triangles in their respective colors with each pointy
tip indicating the heading of the robot. The position covariance ellipse of the robot
limited to 5σ bound has also been drawn on top of the most recent EKF-estimated
pose location at each iteration. Even though the error ellipse is not visible in Fig-
ure 6.5 due to very small uncertainty in position, its evolution during the simulation
time will be illustrated more clearly later when we discuss the achieved results. Fi-

6.5. Simulation of EKF Localization 57

nally, the Cartesian coordinates of the robot’s initial position in the global frame are
kept visible at all times during the simulation with a magenta point placed at (1.5,2).

The LiDAR measurements obtained in the local frame of the mobile vehicle are
restricted within a circle with radius of 2.25 m for the reason that it would not be ap-
propriate to assume the same covariance matrixD, that was obtained in Section 5.3 by
gathering data for a point at a specific range, for scans further away than 2.25m. Do-
ing so would mean assuming a more optimistic measurement covariance matrix that
does not reflect the real nature of the LiDAR sensor for larger measurement distances.
The same argument can also be made for readings of points at a closer proximity than
2.25 m. However, for the mentioned short range of 0 to 2.25 m, the LiDAR exhibits
a similar noise distribution behaviour and thus using the same covariance matrix
was thought appropriate for all measurements in this range. The covariance Ri

t of
a certain feature zi

t was then continuously computed based on Equation 5.22 as the
localization algorithm was executed iteratively. In Figure 6.5, the restricted LiDAR
measurements are shown as a point cloud of red dots around the current location
of the robot. It is also crucial to not get any LiDAR scans behind any object in the
environment even though they are within the 2.25 m zone. The reason is that seeing
through nontransparent items would be physically implausible in a real scenario. This
mentioned feature of not getting unreasonable measurements through square objects
is implemented in the simulation.

With regards to the feature extraction technique given in Algorithm 1, certain pa-
rameters needed to be tuned in accordance with the custom built environment char-
acteristics in order to enhance its performance. First, the threshold for splitting and
merging line segments is adjusted based on the LiDAR measurement noise. Second,
extracted features of very short length and few points are discarded since they are
found to be unreliable. Lastly, spurious line segments that are unexpectedly lengthy
for the number of points that they possess are deleted since these are understood to
be bogus. Figure 6.5 illustrates the extracted features as solid black lines on top of
the red point cloud from the LiDAR sensor. Later in the algorithm after having found
the correspondence for a line feature, if any, a dark green line between the current
robot pose and the feature for which an association has been found is drawn for clear
visualization of the correspondences obtained at each iteration.

As it is already clear from the previous chapters, the localization Algorithm 2 as-
sumes a known landmark map of the environment and works towards estimating the
true position of the mobile robot in it based on the motion model and the correspon-
dences made between extracted line features and the landmarks. Therefore, a point
landmark representation of the environment as discussed in Subsection 5.2.1 should
be provided to the localization algorithm for it to successfully run. In Figure 6.6, the
reader can see the point landmark map of the blueprint given in Figure 6.5. Point
landmarks plotted in green mark the collinear ones while the others are painted in
black and red for easy interpretation of the figure. An obvious observation about this
map is the horizontal and vertical alignment of the point landmarks. This is due to
the fact that all line beacons found in the custom built environment (the sides of nine

58 Chapter 6. Localization

square objects and the four walls of the room) are at either 0 rad, ±π/2 rad or π

with respect to xG . The close proximity of adjacent landmarks and existing collinear
beacons will be a challenge in correct data association later.

Figure 6.6: Point landmark map of the custom built environment

6.5.2 Simulation Results

A simulation of Algorithm 2 (this includes the midpoints) was conducted in the de-
veloped Python test bench environment for 220 iterations to evaluate the performance
of EKF localization with unknown correspondences. The fictitious robot is placed in
the previously mentioned starting position in the environment with the knowledge of
the point landmarks’ global coordinates.

The performance of the EKF in terms of localization is first assessed by observ-
ing the three trajectories: the true (noisy motion of the robot), the ideal motion (not
disrupted by any noise - solely based on the motion model) and the Kalman estima-
tion. Figure 6.7 shows these paths iteratively generated by the algorithm. There is
a plain resemblance between the estimated trajectory (dashed magenta line) and the
route supposed to imitate the real motion of the agent (solid lime line). A significant
dissimilitude is noted due to the lack of noise when looking at the trajectory based
on the motion model, an observation that proclaims the need for a stochastic observer
capable of handling a noisy process such as the motion of our fictitious vehicle.

The performance of position tracking can be further evaluated by plotting the
observed error between the estimated and the real pose during the simulation. In
Figure 6.8, the absolute errors in xt, yt and θt are accompanied by their respective
5σ-bounds. It is observed that, most of the times, the error lies within the defined
5σ limit while occasionally exceeding it. Furthermore, the position error in xt and yt

6.5. Simulation of EKF Localization 59

Figure 6.7: True, estimated and noise-free trajectories resulted from the localization simulation

is for the most part smaller than 1 cm, while the difference in heading only briefly
surpasses 0.025 rad, with the spike around iteration 74 occurring as a result of the
angular nonliterary at π and −π.

Figure 6.8: Absolute error between EKF and true trajectories and the covariance bound during the
localization simulation

Another important performance indicator worth investigating is the deviation be-
tween the true trajectory and the noiseless path computed by the deterministic motion
model. Figure 6.9 plots the evolution of the absolute error between the two poses. The
first three plots correspond to the elements of the pose vector, while the fourth one

60 Chapter 6. Localization

shows the Euclidean distance between the positions at each time step. Easily distinc-
tive errors are accumulated by the end of the simulation, reaching peaks of 46 cm,
63 cm, 0.19 rad and 75 cm for xt, yt, θt, and Euclidean distance, respectively. The
nonlinearity in angle at π and −π causes five high peaks in the plot of θt in this case
as well. The accumulation of errors emphasizes once again the importance of EKF.

Figure 6.9: Absolute error between the true and ideal trajectories during the localization simulation

Figure 6.10 illustrates the full history of the robot’s estimated pose while also
showing the 20σ uncertainties in position estimated by the EKF as yellow ellipses.

Figure 6.10: Position and pose uncertainty history resulted from the localization simulation

6.5. Simulation of EKF Localization 61

First of all, the calculated uncertainty in pose is very small since all the landmarks
are known and the initial position belief of EKF is same as the true position of the
mobile robot as a requirement of position tracking nature of the EKF localization
algorithm. That is also why 20σ uncertainty ellipses were drawn instead of 5σ. At
the beginning of the simulation, the robot is very sure about its whereabouts, but as
it traverses some distance the area of the uncertainty ellipse grows as a consequence
of the noise in the control inputs. On the other hand, observing a landmark leads to
a decrease in the pose uncertainty.

Figure 6.11 plots yet another significant performance measure: the accumulated
number of correct and wrong correspondences found between the extracted features
and the known point landmarks in the map for every ten iterations. It clearly illus-
trates the level of improvement the midpoint tracking extension brings to the EKF
localization algorithm. While the average of found correspondences for all extracted
features is a little bit above 50% for both versions, midpoint tracking data association
enhancement prevents the algorithm from detecting the fifty wrong correspondences
its counterpart commits.

Figure 6.11: Left: Number of correct and wrong correspondences for the detected features with mid-
point data association enhancement; Right: Without midpoint data association enhancement

In light of the obtained results, the simulation of EKF localization with unknown
correspondences is considered successful, as the mobile robot maintained its true tra-
jectory and is able to keep its uncertainty small. The gif file of the Python localization
simulation can be watched by accessing https://bit.ly/3gOBSNr.

https://bit.ly/3gOBSNr

Chapter 7

Simultaneous Localization and
Mapping

This chapter introduces the famous SLAM problem from a mathematical stand-
point, building upon the information presented in all the foregoing chapters. In

the sections that follow, an algorithm relying on the Extended Kalman Filter meant
to solve the SLAM problem for the two-dimensional case is delineated. The solution
put forward addresses the scenario in which a robot equipped with a rotating LiDAR
sensor is operating in an indoor environment and builds a map consisting of line fea-
tures. Without a shadow of a doubt, this chapter represents the culmination of the
present thesis.

7.1 Definition of the SLAM Problem

The particular SLAM form of greatest practical importance is, in the opinion of the au-
thors of [7], the online SLAM problem, which concerns the estimation of the posterior
over the current pose and the map (until the present moment in time). What is given
is represented by all the present and previous controls and landmark observations. In
reality, the objective includes the identification of the correspondences ct+1, in which
case the PDF of the SLAM posterior becomes p(xt+1, m, ct+1 | u1:t+1, z1:t+1, c1:t). Fig-
ure 7.1 illustrates through a graph the goal of online SLAM, as well as the dependen-
cies and influences that one needs to be aware of in pursuing the solution.

7.2 Mathematical Derivation

First and foremost, since both the current pose xt and the map m need to be estimated
in simultaneous localization and mapping, it is convenient to define a combined state
vector yt that covers all the random variables we are aiming to approximate. Equa-
tion 7.1 gives the variables forming this new state vector:

62

7.2. Mathematical Derivation 63

xt−1 xt xt+1

m

utut−1 ut+1

zt+1zt−1 zt

Figure 7.1: Graphical model of the online SLAM problem

yt =

[
xt
m

]
=
[
xt yt θt r1 ψ1 . . . rN ψN

]> ∈ R2N+3 (7.1)

where the assumption is that there are N landmarks in the map. We also let the
mean of the state vector be denoted by µt, with the constituent components shown in
Equation 7.2:

µt =

[
µt,x
µt,m

]
=
[
µt,x µt,y µt,θ µr,1 µψ,1 . . . µr,N µψ,N

]> (7.2)

Augmenting the state vector has inherent ramifications vis-á-vis the dimensions
and contents of the state covariance matrix Σt. With N landmarks in the map, the
number of dimensions is now (2N + 3)× (2N + 3), and the matrix has the variances
of state variables on the main diagonal and the covariances between those as off-
diagonal entries (see Equation 7.3).

Σt =

σ2
x σxσy σxσθ σxσmr,1 σxσmψ,1 . . . σxσmr,N σxσmψ,N

σyσx σ2
y σyσθ σyσmr,1 σyσmψ,1 . . . σyσmr,N σyσmψ,N

σθσx σθσy σ2
θ σθσmr,1 σθσmψ,1 . . . σθσmr,N σθσmψ,N

σmr,1σx σmr,1σy σmr,1σθ σ2
mr,1

σmr,1σmψ,1 . . . σmr,1σmr,N σmr,1σmψ,N

σmψ,1σx σmψ,1σy σmψ,1σθ σmψ,1σmr,1 σ2
mψ,1

. . . σmψ,1σmr,N σmψ,1σmψ,N
...

...
...

...
...

...
σmr,N σx σmr,N σy σmr,N σθ σmr,N σmr,1 σmr,N σmψ,1 . . . σ2

mr,N
σmr,N σmψ,N

σmψ,N σx σmψ,N σy σmψ,N σθ σmψ,N σmr,1 σmψ,N σmψ,1 . . . σmψ,N σmr,N σ2
mψ,N

(7.3)

As mentioned in [15, 86], the preceding matrix can be thought of as comprising
four smaller matrix blocks, as observed from Equation 7.4:

Σt =

[
Σt,xx Σt,xm
Σt,mx Σt,mm

]
(7.4)

64 Chapter 7. Simultaneous Localization and Mapping

This fact requires further clarifications. Since yt is a result of the concatenation
of the pose and map random vectors, one can divide the covariances extant between
these constituent elements into four groups. Thus, we have one submatrix for the
covariances between: 1) the pose vector and itself (Σt,xx), 2) the pose vector and the
map (Σt,xm), 3) the map and the pose vector (Σt,mx), 4) the map and itself (Σt,mm).
Furthermore, according to the basic property of symmetry of the covariance matrix,
it follows that Σt,mx = Σ>t,xm [86]. The four covariance blocks and the state mean are
also illustrated graphically in Figure 7.2:

Σt

Σt,mx

Σt,xm

Σt,mm

µt,x

µt

Σt,xx

µt,m

Figure 7.2: State mean and state covariance in EKF SLAM

From the previous equations and, it is of course clear that one can compartment
the map covariance matrix based on the statistical relationships between landmarks:
variances on the main diagonal and covariances arranged symmetrically over and
below the diagonal, as done in [95] and as Equation 7.5 indicates:

Σt,mm =

Σt,m1m1 Σt,m1m2 . . . Σt,m1mN

Σt,m2m1 Σt,m2m2 . . . Σt,m2mN
...

...
Σt,mNm1 Σt,mNm2 . . . Σt,mNmN

 (7.5)

An interesting property of EKF SLAM is that during the filter’s covariance up-
date step, the total state uncertainty cannot increase. Even more powerful result was
published by the authors of [96], which proved that the uncertainty in any given land-
mark’s position decreases monotonically with each new reobservation, but also that
the preceding properties are in fact true for any submatrix of Σt,mm. A measure of
uncertainty is the determinant and we can thus write, for the particular case of the
j-th diagonal entry in Equation 7.5, the relation given in Equation 7.6:

det(Σt,mjmj) ≤ det(Σt−1,mjmj) (7.6)

Given the notation adopted in this section, one can redefine the SLAM problem as
the calculation of the posterior p(yt | u1:t, z1:t), fully characterized by the mean µt and
covariance Σt [7]. The rest of the section describes the mathematical details behind
the EKF SLAM algorithm. In showing the steps of the derivation, we shall proceed
in a similar fashion to the localization case presented in Chapter 6, by discriminating
between the two stages of the extended Kalman filter.

7.2. Mathematical Derivation 65

Prediction Step

Using the extended state notation, the velocity motion model of Equation 5.4 takes the
form in Equation 7.7 (we keep the notation θ = µt−1,θ throughout this chapter as well).
An important observation that should be made here is that the map is not modified
at this juncture. Only the elements of xt are affected as a result of motion, while
a change in the knowledge about the environment inherently depends on sensing,
which is dealt with in the correction step. As a corollary, the present state vector
yt and the past one, yt−1, have the same size. The observation extends to the state
covariance matrices.

yt = g(yt−1, ut, εt)

yt = yt−1 + Λ>t

−
v̂t
ω̂t

sin(θ) + v̂t
ω̂t

sin(θ + ω̂t∆t)
v̂t
ω̂t

cos(θ)− v̂t
ω̂t

cos(θ + ω̂t∆t)
ω̂t∆t + γ̂t∆t

 (7.7)

Here, Λ>t is a matrix converting a 3× 1 vector into an (2N + 3)× 1 vector, intro-
duced for the purpose of preserving a shortness in the notation. Then, Λt must have
the form in Equation 7.8:

Λt =

1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0

 =
[
I3×3 03×2N

]
(7.8)

As expected, appending the map to the pose vector does not affect the non-additive
nature of the motion noise. Hence, the linearization Equation 6.1 remains valid and
necessary, and so do the modified Kalman prediction equations from Equations 6.2
and 6.3, as long as one replaces xt by yt. The differences that emerge with the use of
a larger state vector in SLAM are related to the computation of the Jacobians Gt and
Lt. For the former, its evaluation at the means of the state, control and noise is given
in Equation 7.9:

Gt =
∂g(ut, yt−1, εt)

∂yt−1

∣∣∣∣
ut, µt−1, 0

= I(2N+3)×(2N+3) + Λ>t

0 0 vt

ωt
(− cos(θ) + cos(θ + ωt∆t)) 01×2N

0 0 vt
ωt
(− sin(θ) + sin(θ + ωt∆t)) 01×2N

0 0 0 01×2N

= I(2N+3)×(2N+3) + Λ>t Gt,lowΛt

(7.9)

where we utilize the notation Gt,low for the lower-dimensional matrix in the above
equation. For the Jacobian with respect to the process noise εt, its SLAM form is

66 Chapter 7. Simultaneous Localization and Mapping

shown given in Equation 7.10 and it can be computed from Lt,x, denoting here the
3× 3 Jacobian of Equation 6.7.

Lt =
∂g(ut, yt−1, εt)

∂εt

∣∣∣∣
ut, µt−1, 0

= Λ>t

− sin(θ)+sin(θ+ωt∆t)

ωt

vt(sin(θ)−sin(θ+ωt∆t))
ω2

t
+ vt∆t cos(θ+ωt∆t)

ωt
0

cos(θ)−cos(θ+ωt∆t)
ωt

− vt(cos(θ)−cos(θ+ωt∆t))
ω2

t
+ vt∆t sin(θ+ωt∆t)

ωt
0

0 ∆t ∆t

= Λ>t Lt,x

(7.10)

From Equation 7.10, and given the control-space process covariance matrix Qt of
Equation 6.6, the mapped covariance to the state space is obtained.

Update Step

Maintaining the measurement conditional independence assumption (Equation 6.8)
allows for the incremental implementation of the Kalman update step. Therefore,
we shall only analyze this second filtering stage for a single feature zi

t, using the
measurement model for line landmarks from Equation 5.9, in which we only need
to replace xt by yt. Linearizing now the nonlinear function h(yt, j, κ) according to
Equation 4.18, it is obvious that its Jacobian with respect to the extended state vector
is needed. We show the contents of this matrix in Equation 7.11:

Hi
t =

∂h(yt, j, κ)

∂yt

∣∣∣∣
µt, j

=
[
Hi

t,x 02×(2j−2) Hi
t,m 02×(2N−2j)

]
=
[
Hi

t,x Hi
t,m
]

Λt,j

(7.11)
Due to space limitations, we wrote Hi

t as the concatenation of the matrices Hi
t,x

and Hi
t,m, multiplied with a third matrix Λt,j. The former is simply the Jacobian com-

puted during the mathematical derivation of the EKF localization (see Equation 6.9),
in which the mean of the location of the j-th landmark takes the place of the precise
coordinates assumed in the previous chapter. The second is also a Jacobian matrix, but
it corresponds to the partial derivatives of h taken with respect to the j-th landmark
mj and evaluated at the mean, as in Equation 7.12:

Hi
t,m =

∂h(yt, j, κ)

∂mj

∣∣∣∣
µt, j

=

[
(−1)κ+1 (−1)κ(−µt,x sin(µj,ψ) + µt,y cos(µj,ψ))

0 1

] (7.12)

7.2. Mathematical Derivation 67

Regarding Λt,j, it represents a matrix meant to convert the 2× 5 matrix
[
Hi

t,x Hi
t,m
]

into the 2× (2N + 3) Jacobian Hi
t. Its form is shown in Equation 7.13, which follows

from Equation 7.11:

Λt,j =

1 0 0 0 · · · 0 0 0 0 · · · 0
0 1 0 0 · · · 0 0 0 0 · · · 0
0 0 1 0 · · · 0 0 0 0 · · · 0
0 0 0 0 · · · 0 1 0 0 · · · 0
0 0 0 0 · · · 0 0 1 0 · · · 0

 =

[
I3×3 03×(2j−2) 03×2 03×(2N−2j)
02×3 02×(2j−2) I2×2 02×(2N−2j)

]

(7.13)
It should be also specified that the filter is implemented sequentially, on a feature-

by-feature basis. For each feature, the algorithm loops through all the landmarks by
incrementing an index k. We maintain the same notations for the estimated measure-
ment and the innovation covariance: ẑk

t and Sk
t , respectively. Provided that maximum

likelihood correspondence occurs at k = j(i) the standard Kalman correction should
happen as specified in Algorithm 2.

Efficient Implementation

As it was surely observed from the above equations, in both filtering steps, the matri-
ces involved in the calculations are sparse. In practice, it is not necessary, nor advis-
able, to use the matrices Λt and Λt,j in computing many of the Kalman filter variables
from their standard formulas. According to [90, 97], there are more efficient ways
to reduce the computational cost of these operations, by exploiting the relationships
between the random variables in the state vector, as well as their arrangement.

For the prediction step, the map is invariant when the robot changes its position
and thus Σt,mm does not change. One can simply integrate motion into the filter as
shown in Equations 7.14-7.17:

µt,x = gx(µt,x, u, 0) (7.14)

Σt,xx = Gt,xΣt−1,xxG>t,x + Lt,xQtL
>
t,x (7.15)

Σt,xm = Gt,xΣt−1,xm (7.16)

Σt,mx = Σ
>
t−1,xm (7.17)

where Gt,x is the Jacobian of the process function with respect to the pose only (as
in Equation 6.4) and gx denotes the motion model for the case when the state is xt.

Moving to the update stage, the innovation covariance concerns only the pose of
the robot, the observation noise and the landmark which the extracted feature has
been matched with. The other landmarks are therefore not involved in its calculation.
However, the Kalman gain is not sparse due to the fact that gaining knowledge about a
landmark should not only influence the belief about the robot’s position and heading,
but also the estimation of the other map elements. In view of these observations, the

68 Chapter 7. Simultaneous Localization and Mapping

SLAM-specific modifications in Equations 7.18-7.20 are made to the Kalman correction
formulas utilized in localization:

Sk
t =

[
Hk

t,x Hk
t,m
] [Σt,xx Σt,xmk

Σt,mkx Σt,mkmk

] [
[Hk

t,x]
>

[Hk
t,m]>

]
+ Ri

t (7.18)

Ki
t =

[
Σt,xx Σt,xmj(i)

Σt,mx Σt,mmj(i)

] [
[Hj(i)

t,x]>

[Hj(i)
t,m]>

]
[Sj(i)

t]−1 (7.19)

Σt = Σt −Ki
t

[
Hj(i)

t,x Hj(i)
t,m

] [Σt,xx Σt,xm
Σt,mj(i)x Σt,mj(i)m

]
(7.20)

The reader should be aware that an index mk for the state covariance indicates
the covariance submatrix between the k-th landmark and either itself, the pose or
the entire map, depending on the other index lying next to mk. The meaning is the
same in the case of mj(i), which replaces mk only to show that the Kalman gain and
the a posteriori covariance are computed only for the landmark associated with the
measurement.

7.3 Landmark Initialization

The observations about the structure of the algorithm made in the preceding chapter
remain valid for EKF SLAM. In spite of that, there is a further issue that needs to be
handled in SLAM and has not been previously encountered. This problem concerns
the fact that, unlike before, when all the landmarks and their number were known
with exact precision, now the robot is facing the challenge of deciding whether an
extracted feature should be associated to a visited beacon or it actually represents a
new landmark. The decision process itself is elaborated on in the next section, but
here we would like to give the expressions that need to be utilized when the robot
indeed chooses to add a new landmark to its current state vector yt.

The problem just described is known in the literature as landmark initialization
[77, 86, 90, 94]. In [86], Solá deals with the aspect of incorporating a new landmark
mN+1 through an inverse observation model that outputs the new landmark’s location
based on the current pose and the measurement zi

t that could not be assigned to any
existing landmark. Note that, in practice, the use of this model replaces the Kalman
update step, which should only be performed if a feature is matched to a known
landmark. To define the inverse observation model for line features, we first introduce
the random vector wt = [wt,ρ wt,α]>, as Equation 7.21 indicates:

wt = h(xt, mN+1, κ) (7.21)

Substituting the preceding equality in the standard observation model and solving
for wt yields the result in Equation 7.22:

7.3. Landmark Initialization 69

wt = zi
t − δt (7.22)

where we think of the senor’s output zi
t as having known entries, which means

that wt is a random vector with variance Ri
t and mean at zi

t. When one solves Equa-
tion 7.21 for mN+1, what results is the explicit inverse observation model defined by
the nonlinear function f(xt, wt, κ) in Equation 7.23:

mN+1 = f(xt, wt, κ)[
rN+1
ψN+1

]
=

[
(−1)κ+1wt,ρ + xt cos(ψN+1) + yt sin(ψN+1)

wt,α + θt − (1− κ)π

] (7.23)

Through this new model, we are aiming to identify a suitable way of augment-
ing the covariance Σt such that Σt includes the correlations between the newly-added
landmark and the pose and between the said landmark and the rest of the map and
the pose. We keep following Solá’s approach to achieve this [86]. Expanding Equa-
tion 7.23 by a Taylor series, truncated after the first-order terms, around the means of
xt and wt, we have the relationship in Equation 7.24:

f(xt, wt, κ) ≈ f(µt,x, zi
t, κ) +

∂f(xt, wt, κ)

∂xt
(xt − µt,x) +

∂f(xt, wt, κ)

∂wt
(wt − zi

t)

≈ f(µt,x, zi
t, κ) + Ft,x(xt − µt,x) + Ft,w(wt − zi

t)

(7.24)

where the Jacobians Ft,x and Ft,w are given in Equations 7.25 and 7.26, respectively:

Ft,x =
∂f(xt, wt, κ)

∂xt

∣∣∣∣
µt,x, zi

t

=

[
cos(ψ) sin(ψ) −µt,x sin(ψ) + µt,y cos(ψ)

0 0 1

]
(7.25)

Ft,w =
∂f(xt, wt, κ)

∂wt

∣∣∣∣
µt,x, zi

t

=

[
(−1)κ+1 −µt,x sin(ψ) + µt,y cos(ψ)

0 1

]
(7.26)

Here, we used ψ as a shorthand notation for the mean µN+1,ψ, found from the
evaluation of f(µt,x, zi

t, κ).
With the inclusion of a new landmark, three covariance matrices should be com-

puted and appended to Σt. Firstly, the (N + 1)-th landmark’s covariance ΣN+1,N+1
results from Equation 7.27 [86]:

ΣN+1,N+1 = Ft,xΣt,xxF>t,x + Ft,wRi
tF
>
t,w (7.27)

Secondly, the correlations of the new landmark with the rest of the variables in the
state vector are gathered in a matrix calculated according to Equation 7.28 [86]:

ΣN+1,all = Ft,x
[
Σt,xx Σt,xm

]
(7.28)

70 Chapter 7. Simultaneous Localization and Mapping

By remembering the symmetry property of the covariance matrix, we also have
Σall,N+1 = Σ>N+1,all. The two preceding equations are actually the efficient implemen-
tation of SLAM covariance expansion. A proof that unveils the precise mathematical
origins of the shown formulas can be consulted in Appendix C.

To conclude the section, when a new landmark is detected, the indications in
Equation 7.29 should be followed [86]. The graphical representation of the necessary
additions is revealed in Figure 7.3:

µt =

[
µt
µN+1

]
, Σt =

[
Σt Σ

>
N+1,all

ΣN+1,all ΣN+1,N+1

]
(7.29)

Σt

Σ
>
N+1,all

ΣN+1,N+1

Σtµt

µt

µN+1 ΣN+1,all

Figure 7.3: State mean and state covariance after landmark initialization

7.4 Data Association

In the derivation carried out so far, the discussion of the crucial feature-landmark
matching problem has been avoided. As far as correspondences are concerned, SLAM
is somewhat different compared to localization, because new landmarks have to be
added to the map until all the cartographic data is gathered. Therefore, in case a
feature does not fall within the validation ellipse of a known landmark, it cannot be
associated with any map element and may therefore actually indicate an unobserved
landmark. Notwithstanding, it may also simply constitute a spurious feature. Distin-
guishing between outliers and features with high landmark potential is in many cases
done by keeping an evidence of possible future landmarks in a data structure very
much similar to m. Out of those, only the features deemed sufficiently reliable, are
added to yt [94, 98, 96].

7.4.1 Tentative Landmark List

Dissanayake et al. develop in [96] a landmark initialization algorithm that solves the
correspondence problem by defining a tentative (or provisional) landmark list in the
form of the vector mtent, with elements mj,tent = [rj,tent ψj,tent]

>, where j ∈ {1, . . . , P}.
There are thus now two groups of elements every observed feature zi

t should be
compared against. In consequence, we define sensor-space validation gates for each

7.4. Data Association 71

mj,tent as well, all having the threshold γ1, and for each feature-landmark combina-
tion we calculate the squared Mahalanobis distance Mik,tent. Regardless of the nature
of the landmark, a certain measurement falling within one or more validation gates
has to be matched based on a nearest neighbour approach. For a correspondence to
mj, the entire state yt (i.e.: pose and map) needs to be updated. When matching is
done for a tentative beacon mj,tent, the ideal thing to do would be to update the mean
and the covariance of this segment such that it can be detected and correctly matched
in future iterations. Apart from these significant additional computational and stor-
age requirements, the robot should understand when a tentative landmark becomes
reliable enough or, on the contrary, when it should be discarded for inconsistency
reasons. It is easiest to tackle all the details in a structured manner, when matching
hypotheses are individually discussed for a particular feature.

Association with a Confirmed Landmark

The EKF SLAM algorithm is examining all the elements of m and finds several feasible
landmarks. The index of the statistically closest landmark is selected and labeled as
j(i) by implementing a nearest neighbor technique. In this case and this case only is
the Kalman update step carried out for the entire state, because both the pose and the
cartographic estimations are contingent on landmarks rediscoveries.

Association with a Tentative Landmark

For any given feature, a series of comparisons is made with all the P elements mk,tent
of the provisional map after checking the confirmed landmark list. Let the data associ-
ation method generate the maximum likelihood correspondence index j(i) as a result
of the comparisons. At this stage, the feature should be matched with the j(i)-th pro-
visional landmark, and the mean and covariance of the latter should be theoretically
updated through Kalman correction.

The important thing to realize is that all xt, mt and mk,tent (for k 6= j(i)) affect the
uncertainty of a provisional landmark. Thus, if one aims to correctly compute the
a posteriori tentative map mean and covariance, one should take all the correlations
into account. Notwithstanding, the update of a tentative feature’s position should
happen without affecting the pose of the robot or the rest of the map. The literature
fails to provide a detailed strategy for dealing with tentative landmarks and only
describes the maintenance of the provisional list in equivocal broad terms (see all
[7, 77, 90, 96, 94]). A possible interpretation of the described methods is the least
computationally expensive technique of choosing not to update the locations of the
provisional map at all, avoiding the use of a second filter. Furthermore, it was decided
to even completely disregard the correlations between any mk,tent and the state yt and
keep only the provisional landmarks’ variances in a non-sparse matrix Σt,mtentmtent , in
order to reduce the storage requirements. Vis-à-vis the matching process itself, it is
adapted to our approach by simply writing adequately sized zero matrices instead of
the pose-map covariances appearing in Equation 7.18.

72 Chapter 7. Simultaneous Localization and Mapping

If the k-th tentative landmark is successfully associated with an extracted feature
more than a predefined number of times a during A successive iterations, it is moved
to the permanent landmark list m. A variable ak is incremented every time an associ-
ation transpires and another variable Ak keeps track of the number of iterations since
the addition of mk,tent to the provisional list. We have already discussed at the end of
Section 7.3 the procedure for adding a new element to the map, but two things should
be mentioned in the special case of provisional landmarks. Firstly, when adding a
feature to the tentative list we disregard Equation 7.28. Secondly, if mj,tent becomes
a confirmed map element, one should delete the (2j + 2)-th and the (2j + 3)-th rows
of µt,mtent and columns of Σt,mtentmtent . The deletion (but without the insertion into m)
will also happen when the robot fails to detect again the same provisional landmark
sufficiently often during A iterations. The described procedure ensures a desired
landmark reliability.

No Association Found

It can of course happen that the feature does not correspond to any element in either
m or mtent. In this scenario, the measurement zi

t is assumed to be associated with a
new provisional landmark, whose mean and covariance are appended to µt,mtent and
Σt,mtentmtent , respectively, through the inverse observation model introduced in Sec-
tion 7.3. Notice the high level of resemblance between this situation and the recently
discussed one, in which a tentative landmark is raised to the rank of confirmed land-
mark. However, the difference is that, in the latter case, the augmentation concerns µt
and Σt instead and correlations with the pose and the other landmarks are initialized
with nonzero values.

7.4.2 Correspondence Enhancement for Line Features

Ambiguity in data association is inherent to the use of line features, as shown in Sec-
tion 6.3, and it may affect the performance of EKF SLAM. In the previous chapter,
a solution for reducing the probability of wrong correspondences was to consider
the landmark and feature midpoints. In localization, the locations of the landmarks
in the global frame do not vary and it is fairly straightforward to incorporate mid-
points in data association. The same thing cannot be said about SLAM, as uncer-
tainty shrouds the true positions of the map elements. Midpoints need therefore to
be updated together with the EKF correction. The extra computational overhead is
apparent. Although research papers such as [77, 94] declare the use of endpoints
(even more computationally costly to maintain) in SLAM as successful, implementing
something similar in this project was not found effective and absolutely necessary for
the deployment of a basic, yet functional, SLAM algorithm.

Midpoints aside, it should be specified that data association is handled as dis-
cussed in Section 6.3, following these three principles: validation gating, maximum
likelihood association (based on the landmarks’ estimated positions with respect to
the robot) and avoiding associations of features to already assigned landmarks.

7.5. EKF SLAM Algorithm 73

7.5 EKF SLAM Algorithm

We show in Algorithm 3 our solution to the online SLAM problem. Note that the
pseudocode is very high level and significant modifications are clearly a necessity for
implementation on a real machine. We show only one iteration in which we assume
the existence of N confirmed landmarks and P tentative ones. Although not explicitly
shown, the variables that count the number of associations and iterations for tentative
landmarks, i.e.: ak, Ak, where k ∈ {1, . . . , P}, must be passed at the function call, but
also returned at the end of every iteration.

Algorithm 3: EKF SLAM with Unknown Correspondences

1 EKF_SLAM(µt−1, Σt−1,µt−1,mtent , Σt−1,mtentmtent , ut, zt, N, P):
2 Compute Gt,x, Lt,x and Qt;
3 Efficiently compute µt,x and append to it µt−1,m;
4 Efficiently compute Σt;
5 Extract all the visible line features zi

t and find the covariances Ri
t;

6 Increment Ak ∀k ∈ {1, . . . , P}. If Ak > A, resize µt,mtent and Σt,mtentmtent . P−−;
7 for all extracted features zi

t = [ρi
t αi

t]
>, from i = 1 to i = Z

8 for all landmarks in m, from k = 1 to k = N do
9 Find the value of κ to decide the correct measurement model;

10 Compute ẑk
t , Hk

t,x and Hk
t,m;

11 Efficiently compute Sk
t ;

12 Compute Mik. If Mik > γ1, discard Mik;
13 end
14 Find j(i), the correspondence of the nearest unmatched neighbor of zi

t;
15 if j(i) exists then
16 Efficiently compute Ki

t;

17 µt = µt + Ki
t(z

i
t − ẑj(i)

t);
18 Efficiently compute Σt;
19 else
20 for all landmarks in mtent, from k = 1 to k = P
21 Find the value of κ to decide the correct measurement model;
22 Compute ẑk

t,tent and Hk
t,mtent

;
23 Efficiently compute Sk

t,tent;
24 Compute Mik,tent. If Mik,tent > γ1, discard Mik,tent;
25 end

74 Chapter 7. Simultaneous Localization and Mapping

Algorithm 3: EKF SLAM with Unknown Correspondences (continued)

40 . . .
41 . . .
42 Find j(i), the correspondence of the nearest unmatched neighbor of zi

t;
43 if landmark j(i) exists then
44 aj(i) ++;
45 if aj(i) ≥ a then
46 Find κ to decide the correct inverse measurement model;
47 Compute µN+1. Extend µt;
48 Compute Ft,x and Ft,w;
49 Efficiently compute ΣN+1,N+1 and ΣN+1,all. Extend Σt;
50 Resize µt,mtent and Σt,mtentmtent ;
51 P−−. N ++;
52 end
53 else
54 Find κ to decide the correct inverse measurement model;
55 Compute µN+1 from zi

t. Extend µt,mtent ;
56 Compute Ft,x and Ft,w;
57 Efficiently compute ΣN+1,N+1. Extend Σt,mtentmtent ;
58 P ++. AP = 0. ap = 0;
59 end
60 end
61 end
62 µt = µt. Σt = Σt;
63 µt,mtent = µt,mtent . Σt,mtentmtent = Σt,mtentmtent ;
64 return µt, Σt, µt,mtent , Σt,mtentmtent , N, P;

7.6 Simulation of EKF SLAM

A simulation of Algorithm 3 was carried out in a Python environment to evaluate the
performance of EKF SLAM with unknown correspondences. The fictitious robot is
placed in the same environment described previously in Section 6.5, but this time it
is deprived of the knowledge of the landmarks’ coordinates. These are progressively
acquired through repeated observations of features (kept as tentative landmarks) that
are being promoted to the landmark rank after 3 detections during 10 consecutive iter-
ations. The time step, initial pose, controls, noise, range of the simulated LiDAR and
Split-and-Merge thresholds are not altered, with the algorithm also being executed
for 220 iterations.

7.6. Simulation of EKF SLAM 75

7.6.1 Localization Performance

Just as in Section 6.5, the performance of the EKF in terms of localization was as-
sessed for SLAM as well, by observing three different trajectories: the true noisy
motion of the robot, the ideal motion not disrupted by any noise, and the Kalman
estimation. Figure 7.4 shows these trajectories iteratively generated by the algorithm.
There is a crystal clear similitude between the estimated trajectory (dashed magenta
line) and the path supposed to mimic the real motion of the vehicle (solid lime line).
A substantial disparity is noticed due to the lack of noise when looking at the orange
trajectory, a fact that evinces the need for a stochastic observer capable of handling
noisy processes.

Figure 7.4: True, estimated and noise-free trajectories resulted from the SLAM simulation

The results of position tracking can be further examined by plotting the error
between the estimated and the real pose during execution. In Figure 7.5, the absolute
errors in xt, yt and θt are complemented by their respective 5σ covariance bounds.
What is observed is that the error invariably lies within the defined uncertainty limit.
Moreover, the position error in xt and yt is for the most part smaller than 10 cm,
while the difference in heading only briefly surpasses 0.05 rad, with the spike around
iteration 74 appearing as a consequence of the angular nonliterary at π and −π.

Yet another performance indicator worth a closer investigation is the discrepancy
between the true trajectory and the noiseless path generated by a non-stochastic mo-
tion model. Four absolute error plots between the two pose evolutions can be seen in
Figure 7.6. Three of them correspond to the components of the pose vector, while the
fourth shows the Euclidean distance between the locations at each time step. Visible
errors are accumulated by the end of iteration 220, reaching peaks of 35 cm, 77 cm,
0.18 rad and 80 cm for xt, yt, θt, and Euclidean distance, respectively. The nonlinearity
in angle causes high peaks in the plot of θt in this case too.

76 Chapter 7. Simultaneous Localization and Mapping

Figure 7.5: Absolute error and covariance bound during SLAM simulation

Figure 7.6: Absolute error between the true and ideal trajectories during the SLAM simulation

7.6.2 Mapping Performance

Let us first illustrate the mathematical property of uncertainty reduction of landmark
variances. Figure 7.7 shows the evolution of the determinants of Σt,mjmj , j ∈ {1, . . . N},
with N being the number of map elements at each iteration. The trend is undeniably
a decreasing one and, in the limit, the determinants will converge to a very small
value, proving that the vehicle becomes more certain about its surroundings as explo-
ration unfolds. One comment we would like to make here is that, notwithstanding the

7.6. Simulation of EKF SLAM 77

diminution of the determinants, the uncertainty of the map is in fact always small,
even at landmark initialization. The phenomenon is due to many factors: the rela-
tively small control noise, the even smaller observation noise, and the chosen motion
sequence of the robot, which allows for immediate reobservation of landmarks. De-
spite these, the theory seems to accurately predict the behaviour in simulation.

Figure 7.7: Evolution of the determinants of landmark variances

In order to gauge the accuracy of the acquired map, the scatter plot displayed
in Figure 7.8 containing both the locations of the true landmarks and the means of
the estimated landmarks’ positions was created (the polar to Cartesian conversion
has been applied for illustration purposes). Although not exactly superimposed, the
acquired and real map elements lie quite close to each other. The robot was able to
map 27 out of the total of 40 created landmarks, or approximately 68% of the map.
When taking into account the fact that there are five pairs of collinear lines in the real
map, the success rate goes up to 78%, since no mechanism to distinguish between
landmarks with the same polar coordinates has been implemented. The reason for not
mapping the entire environment is that the utilized trajectory is somewhat arbitrary
and it was not designed with the objective of optimizing the mapping process.

An additional interesting visual representation of the developed SLAM solution is
the plot in Figure 7.9, in which the full history of the robot’s estimated pose is shown.
The yellow ellipses are the 5σ-uncertainties in position found through EKF. First of
all, as opposed to localization (see Figure 6.10), the uncertainty is more significant,
which was expected, as no landmark is initially known. When the algorithm starts,
the robot is very sure about where it is, but as it moves, the area of the ellipse grows
due to the noise in the control. Measurements are taken and eventually landmarks are
discovered and initialized with their own uncertainties that include the observation
inaccuracies. When reobserved, a landmark produces a decrease in the current pose
uncertainty (but also in the uncertainty of other map elements; this is not shown here
explicitly). Since at iteration 220, the robot is in a previously explored area (marked
with 1 in the figure), the pose uncertainty ellipse is not that apparent. On the other
hand, when entering an uncharted area with low known landmark density (like area

78 Chapter 7. Simultaneous Localization and Mapping

Figure 7.8: Cartesian coordinates of the estimated and true landmarks

2), the yellow ellipse increases in size.

1

2

Figure 7.9: Position and pose uncertainty history, along with the true and final estimated line land-
marks

What Figure 7.9 also shows is the real map (see the dim green lines), along with
the final configuration of the estimated map elements, which are plotted in blue over
the actual landmarks. It is obvious that the acquired landmarks match the true ones
satisfactorily, and their uncertainties are small when the robot completes the journey
around the environment (see the thin coral ellipses).

In view of all the showcased results, the simulation of EKF SLAM with unknown

7.6. Simulation of EKF SLAM 79

correspondences is deemed successful, as the robot maintains the true trajectory and
is able to create an accurate cartographic representation of the most part of its sur-
roundings. The gif file of the Python SLAM simulation can be watched by accessing
https://bit.ly/3gOBSNr.

https://bit.ly/3gOBSNr

Chapter 8

ROS Implementation

Throughout the entirety of this report, we have explored subject matters that serve
as building blocks and are crucial to the SLAM problem. Especially, considering

sections 6.5 and 7.6 where we have simulated the localization and SLAM algorithms
on a custom built environment. In the above mentioned sections, as we know, the Li-
DAR sensor scans at different times stamps were artificially generated along with the
movement of the robot. While this served as an essential step in developing and de-
bugging the algorithm code, there are scenarios that could not be simulated through
these means. After all, the goal of such algorithms is to be deployed on a machine op-
erating in the real world. The platform of choice in our case was the Kobuki TurtleBot
whose details are presented in system overview (Chapter 3). However, there would
be a considerable gap in between the implementation done in Sections 6.5 and 7.6
and the actual implementation on Kobuki. The Python implementations were simply
done with the motive of testing and debugging the SLAM and localization algorithms
as opposed to the actual implementation.

When considering the actual deployment, there are additional factors to be con-
sidered such as peripherals that are crucial to a functioning system. These peripherals
include the processing units as well as the sensory units. In consideration to the actual
implementation, a Raspberry Pi micro-computer would be responsible for executing
the algorithm while it communicates with the LiDAR sensor and then the results can
be plotted separately on a different computer. Moreover, even with all the neces-
sary steps taken, testing the developed algorithms directly on the robot could lead
to unpredictable scenarios. Albeit, such unpredictability could never be completely
removed, it could be considerably reduced through prior robust testing on simula-
tion platforms, which provide close to real life conditions. One of such platforms
in our case was Gazebo. On the surface, it may appear that testing with Gazebo or
through the methods in Sections 6.5 and 7.6 present the same situations, as ultimately
both are simulations. Having said that, the functionalities provided by Gazebo far
exceed what we could achieve through our own code. Gazebo is a robotics simulator
equipped with complex physics engines, which is crucial to simulating the dynam-
ics and kinematics of a robot and other models. Furthermore, its strength lies in its

80

81

ability to include custom built structures that emulate the indoor and outdoor scenar-
ios for a robot and its interaction with such structures through the use of simulated
sensors. To give an example, an indoor environment such as a house could be built
and implemented in Gazebo, with the robot being operated in this environment. As
for simulated sensors, Gazebo takes into account even the properties such as how
readings from the sensor are impacted by interaction with different kinds of surfaces.
Moreover, what makes Gazebo even more of an obvious choice is its compatibility
with Robot Operating System [99, 100].

ROS will provide the framework for the development of software required for
implementation. The main concept behind ROS is its philosophy to divide large
systems into multiple independent subsystems which communicate with each other
through a semi peer-to-peer network. This became one of the enticing factors to
choose ROS, as it allowed individual development of the functionalities needed to
implement the SLAM/localizatoin algorithm practically. On top of that, it keeps the
door open for future enhancement of this project, since the base structure could be
built upon by adding new subsystems to it. Additionally, a key aspect of ROS is its
inclination towards re-use of code. This would allow us to keep substantial amount of
code that has been implemented for simulation with Gazebo and, with introduction
of minor changes, essentially the same structure could be utilized to control the robot
in real life. The subsystems mentioned in the beginning of this paragraph are referred
to as nodes, which are basically processes that serve distinct objectives. Accordingly,
the most fundamental, yet crucial processes (nodes) in our system would be those
that execute the SLAM or localization algorithm and those that extract the sensor
readings. The other nodes for the ROS implementation would be listed eventually
with the whole structure. Prior to that, some ROS terminology needs to be introduced
in order to keep the forthcoming discussion cogent.

ROS Terminology

Continuing the line of thought from the previous paragraph, as stated before, nodes
represent the processes in the ROS structure. Simply put, any code that we develop
will be wrapped inside a node in addition to certain specifiers that set up the re-
spective node. Correspondingly, they come in different varieties out of which the
most frequently used in our case are the publishing and the subscribing nodes. As
mentioned earlier, the ROS framework is heavily dependent on the peer-to-peer com-
munications between its nodes. The data that needs to sent in-between nodes is
transferred in the form of messages. In a ROS-dependent robotic system, there are
multitude of message types being utilized depending on the kind of data being trans-
ferred. Whereas, the links through which these message streams travel to the other
nodes are referred to as topics. Correspondingly, as the name suggests, a publishing
node transfers the data (message stream) to the subscribing node via a topic. The
publisher is responsible for establishing a topic to which a subscriber could latch on
to. It is worth mentioning that topic names must be unique, as the subscriber is only

82 Chapter 8. ROS Implementation

privy to the name of the topic and is otherwise unaware of the publisher. Another
kind of relation between nodes that will be employed is that of a server and a client.
This sort of communication is handled through ROS services to facilitate the demand
for request/reply communication, which is unachievable through one way publish-
er/subscriber network. The client sends a service request, which is simply a request
to call a function (callback function) in the server node. Gazebo provides a variety of
ROS services, some of which will be called upon during the implementation [99, 101,
100].

There are multitude of other components as well that contribute to the ROS archi-
tecture. Accordingly, to manage such a compartmentalized system, ROS is built on
top of a comprehensive filesystem. Out of all, the ROS package is the most significant
to our discussion. It is commonly referred to as the atomic unit of ROS, on top of
which everything else is constructed. Although a package contains a wide variety of
files, the only relevant attribute to our discussion is that all executable code is orga-
nized inside a package, as well as the dependencies on which the node relies. Apart
from the packages built by us, there are thousands of publicly available packages
developed by the ROS community. It is simply impractical, as well as time consum-
ing, to write all the code by ourselves, therefore we will be utilizing some outside
packages that are needed to achieve the SLAM/localization implementation. To end
this discussion, we introduce the final term: workspace. When controlling a robotic
system using ROS, multiple packages could be used at the same time, however, all
the packages should be built and contained inside the same ROS workspace [99, 101,
100].

Gazebo Models

Even though, the ROS structure was built around the simulations in Gazebo, efforts
were still inspired towards making a structure which could directly be implemented
on the actual robot. It could be thought of as Gazebo being a place holder for Kobuki
TurtleBot in the real environment. Therefore, a notable part of the simulated world
is the robot to be controlled. Although Gazebo provides tools to construct a bespoke
robot model and fit it with all the necessary sensors, we opted to go for models which
were already available. Out of all, the TurtleBot3_Burger robot model was the perfect
choice because of its similarities to our actual robot 1. The robot model could be
seen in Figure 8.1, where it is placed inside an empty Gazebo world. This model is
extracted form the TurtleBot3 Gazebo package, which also includes gazebo_ros_pkgs
packages, necessary for the integration of Gazebo with ROS. Apart from the robot’s
body, the key aspect of the Turltlebot in simulation is the attached LiDAR sensor on
top. The simulated sensor is a 360◦ rotation LiDAR, capable of fetching 360 points
per revolution [102, 103].

Besides the TurtleBot, other notable models were the structures that formed the
1From now on, any mentions of the “TurtleBot” refers to the “TurtleBot3_Burger” model in simula-

tion, unless otherwise notified

83

Figure 8.1: TurtleBot3 Burger model inside Gazebo environment

surroundings. The world in which the robot navigates has a critical impact on the per-
formance of the algorithm, as the collected landmarks depend on the objects within
the sensor range. Gazebo is equipped with the tools to generate any kind of envi-
ronment, be it outdoor or indoor. Complying with our needs, we chose an indoor
environment without the complexities of outdoors (e.g. wind) as well as devoid of
any moving objects other than the robot itself. This indoor environment is just a col-
lection of randomly placed walls inside a closed square space, constructed to avoid
the robot from wandering away from the built area. A picture of the Gazebo world is
shown in Figure 8.2.

Figure 8.2: Gazebo structure with the TurtleBot inside it

84 Chapter 8. ROS Implementation

ROS Implementation Structure

At this point, we have all the key components required to emulate the conditions of
the real world, specific to our case. Gazebo simulations should be able to present a re-
flection of the scenarios encountered in an actual indoor structure. Correspondingly,
the ROS implementation will be built around the flow of critical information to and
from Gazebo. On that account, Gazebo will be treated as a node that runs the pro-
cesses for the simulation of TurtleBot and its world. The graphical node arrangement
shown in Figure 8.3 is the ROS solution to the given problem.

Process NodegetPosition Node /rbt_pose

/scan

/odom

/cmd_vel

LiDAR Node

Robot Base Node

TurtleBot

Gazebo

/get_model_state
Service

Request/Response

Figure 8.3: ROS graph structure for Gazebo implementation

The node graph in Figure 8.3 is an archetypal example of a ROS structure illus-
trating a collection of nodes and a variety of topics being published/subscribed to.
However, it should be noted that some information has been omitted or presented in
a way that best describes the whole system. For example, the Gazebo node is shown
containing the simulated TurtleBot, which has its own separate nodes but in reality
it’s just one of the models inside Gazebo. Nonetheless, the rest of the discussion will
invest in elucidating the roles played by each node in the respective graph. A good
starting point will be the Process Node, that represents the main processing part of
this graph, as it could either be housing the SLAM or the localization code, of course
with suitable alterations. The node in itself is both a publisher and a subscriber and as
it iteratively parses through the code, it publishes commands on a topic whereas also
utilizing the information gained through subscribed topics. At each iteration, the Pro-
cess Node should publish control commands to the TurtleBot in the form of linear and
angular velocities. It does so by using the topic cmd_vel to which the TurtleBot Base
(Robot Base Node) has been configured to subscribe and move accordingly. In the
case of actual robot, it should also have a node that gives input to control the wheel
motors. Moreover, the algorithm is heavily dependent on the LiDAR scanned points.
Consequently, the LiDAR sensor mounted on top of the bot (represented by LiDAR
Node in Figure 8.3) is made to publish its data over the scan topic. The message type
for scan holds more than just the ranges and bearings, it also includes entities such as
time stamp, frame id, increment angle etc.

85

In practice, these are all the basic nodes that would be essential to implement
SLAM or localization using a LiDAR on a wheeled robot. Naturally, additional nodes
could be added if new peripherals are attached. As this is a simulation, it gives us
dominion over everything inside Gazebo - viz., we have access to all kinds of informa-
tion in relation to the TurtleBot model. In the real world, we are not privy to the exact
actual position of the robot but only an estimate, yet while simulating, it is worth-
while to check the credibility of our own algorithm by comparing its results against
the exact values acquired from Gazebo. Congenitally, Gazebo provides a ROS service
which when requested, acquires a model’s pose and sends it to the client node. In
this situation, the client is the getPosition Node node which calls the get_model_state
service and then publishes the received pose information on the rbt_pose topic. To
clear any confusion, the obtained exact position is solely used for comparative reasons
and has no contribution in the algorithm. Moreover, in relation to wheeled robots, it
is also customary to contemplate the use of odometry to generate a robot’s pose. A
deterministic odometry model is hampered by accumulation of position error with
time, resulting in a drift in pose estimate. Nevertheless, it would prove for a good
comparative study, if the effectiveness of the proposed algorithms in this report are
juxtaposed against the odometry results. As such, the TurtleBot base node publishes
the odometry messages, from which the most significant detail is the two dimensional
pose of the robot.

The discussion heretofore has made it inherent that communication between nodes
is the glue that keeps the whole ROS architecture functional. Still, just like in any
form of communication, there is a rate at which the nodes communicate and this
rate is not necessarily equal for every topic. Expectedly, there is a disparity between
the publishing frequencies of the nodes in Figure 8.3. For instance, the LiDAR node
transmits at 5 Hz while the control velocities are being published at a slower rate of 2
Hz. This becomes a significant problem as the sensor values and the control command
are expected to be from the same time step in the proposed algorithms. Increasing
the pace of the slower node is non-viable since the rate is restricted by the calculation
time for necessary operations. Alternatively, slowing the faster node may seem like
an obvious solution, but oftentimes, sensors have unchangeable rates at which they
provide the readings. And, even if it were possible to slow down the sensor node,
there will still be no guarantee that the values utilized are all from the same time.
Therefore, a synchronization approach is needed to solve the issue.

On that account, message_ filters is a utility library commonly utilized by the ROS
community for message synchronization [104]. As stated, we utilize this library to
synchronize the incoming messages from different publishers using their time stamps.
Each message has a header field that contains the time stamp at which that particu-
lar message was published. Consequently, in the receiving node the time stamps of
incoming messages (from different topics) are compared and only the messages with
(approximately) equal time stamps are allowed to pass to the subscriber. This brings
us to an aspect of Process node which was left unexplained - subscribing to a topic
published by itself. This was done to synchronize the time at which command ve-

86 Chapter 8. ROS Implementation

locities are given and the LiDAR readings are taken, as the message_filter functions
are only applicable to incoming data. Consequently, in the algorithm, at the start of
each iteration we send the control commands and then receive the LiDAR readings
corresponding to same time.

During the testing with Gazebo and ROS, the ROS structure was found to be
properly set up, as we were able to provide the TurtleBot with command velocities and
synchronously receive the LiDAR data along with the actual robot pose from Gazebo.
Furthermore, the SLAM algorithm was made to iterate for a certain number of times
and was observed to be executing without any communication problems between the
nodes. However, even though the setup seemed to be functional, the results of the
SLAM algorithm were erroneous. As the final SLAM implementation with ROS was
approached at the end, after thorough testing with simulations in Python (discussed
in Sections 6.5 and 7.6), the limited remaining time frame to implement the algorithm
with ROS and to fix the issues, was found to be inadequate. Notwithstanding, ROS
implementation remains to be an important aspect for this project and thus efforts
will be directed later on towards solving its underlying issues.

Chapter 9

Discussion

The following section is a miscellaneous collection of additional keynotes that relate
to this project. It explores topics such as suggestions for future improvement of

the employed methods, problems incurred during the project as well as the direction
towards which the project could be taken next.

Motion Model

The motion model given in Section 5.1 assumes a nonzero angular velocity com-
mand, thus restricting the mobile robot to always following a circular path. Albeit
very straightforward to comprehend and implement, the equations required for mod-
eling a purely linear motion were omitted in this project on purpose, due to the extra
Jacobian matrix computation necessity. It is for this reason that a sole linear motion
of the mobile robot is not achievable with the current version of the algorithm. Nev-
ertheless, this did not rise any difficulty for the simulation purpose. By giving a tad
of angular velocity besides the desired linear speed, a linear enough movement to the
human eye was obtained when necessary.

Multi Hypothesis Tracking

The basic EKF implemented in this project can be extended further by incorporating
a multi-hypothesis tracking filter (MHT) that enables multimodal posteriors. Doing
so would allow pursuit of multiple correspondences using a mixture of Gaussians
to form the posterior. This enhancement would bring further robustness to the data
association problems faced in the challenging environment of the test bench where
there exist five sets of collinear landmarks. In the presence of an MHT filter, the
need of midpoint tracking for decreasing the number of incorrect data associations
would be questionable and maybe even obsolete. Even though MHT is not able solve
the kidnapped robot problem, it is appropriate for tackling the global localization
problem, an improvement we would like to include in our solution in the future [7].

87

88 Chapter 9. Discussion

Implementation

The approach towards SLAM and localization discussed in this report still remains
to be tested practically in a real indoor environment. Initially the project priorities
were inclined towards practical execution. However, the unique circumstances aris-
ing from the global pandemic shifted the project’s direction towards a more theoretical
approach. Along with the simulations in Python, the ROS and Gazebo implementa-
tion were considered to be adequate verification tools for the developed algorithms, in
place of the actual deployment on TurtleBot. Moreover, as previously stated, the ROS
structure was still built with practical implementation in mind. The line of thought
behind this modus operandi was inspired by the reasoning to use simulations for thor-
oughly debugging, testing and optimizing the algorithms, before jumping into practi-
cal experimentation, where the complexities of the problem increase significantly. On
that account, the ROS structure although already constructed and seemingly func-
tional, still has to be fixed for some underlying issues. The development of SLAM
and localization algorithms was naturally assigned a higher priority, henceforth, they
were being worked on until the final moment. Consequently, it was simply not feasi-
ble within the remaining time frame to fix and test ROS in combination with the latest
version of code.

Data Visualization

Data visualization is a key requirement when developing a system, it lets us verify
that the operation of a designed algorithm is as intended. In the Python simulations,
the data plotting was part of the algorithm, therefore, the plotting was an additional
process alongside the other critical functions. Plotting added to the time that the pro-
cess took as a whole for calculations, thus impacting the rate of the whole operation.
In the case of ROS, the same method was being followed for plotting. However, to
avoid this unnecessary processing inside the main node, an extra ROS node can be
created which is merely responsible for the visualization of data coming from the
main process node. This way, the data visualization process is completely separate
from the main node, which now only sends the data to be plotted. The result would
be a significant reduction in workload for the main process of SLAM. Furthermore,
this method becomes crucial when the processing node is in a remotely operating
machine and the data needs to be visualized on a separate device away from the main
computer. In this case, the information could be wirelessly sent to the visualization
node in the other device. One such commonly used plotting environment is Rviz. It
works as a general purpose 3D visualization tool for robots, sensors, and algorithms.
Needless to say, Rviz was considered as an option when building the ROS structure.
Howbeit, due to complete lack of any prior experience with ROS, the idea of adopting
Rviz was discarded as a way of reducing the complexities in an already challenging
task.

89

Drone Application

The inspiration to take on this project was aspired by our last project involving a quad-
copter. During that project, it became inherently clear how crucial it is for drones to
localize themselves when operating in unknown environments. However, due to the
abundance of control variables and complex nature of drones, it was decided that we
tackle a simpler problem but with the same end goals. Accordingly, when research-
ing the subject matter for this project, it was kept in mind to maintain an approach
to SLAM as independent as possible from the type of robot platform. Therefore, the
concepts developed in this report, for a wheeled robot in 2D plane, can be extended to
a drone in 3D plane. In this scenario, the robot now has 6 DoF (degrees of freedom),
resulting in a addition of three more variables in our state vector. The elements inside
the pose vector for a drone will be namely: the translational position x, y and z, along
with the angular pose given by roll (φ), pitch (θ), and yaw (ψ). In addition to that,
a drone is equipped with comparatively more sensors than our present case. These
sensors for a drone may include: LiDAR, IMU, ultrasonic sensor, RGB-D camera etc.
As such, there will be a need for a sensor fusion algorithm. Kalman Filter, the crux of
this project, is also commonly utilized as sensor fusion algorithm in drones. Adding
to the complications, a drone is inherently unstable. Therefore, the SLAM algorithm
should be implemented on top of a comprehensive control algorithm (e.g. LQG). Also,
the maps generated by SLAM for this scenario will be three dimensional, henceforth,
the number of landmarks identified will most likely be significantly higher, unless
a more selective approach to feature extraction is utilized. Additionally, the compu-
tation to run the SLAM algorithm for drones would be enormous and could not be
implemented on any run of the mill processor. In the end, our decision to first tackle
the problem for planar implementation of SLAM seems appropriate, and serves as a
step towards more complex algorithms and situations.

Midpoint Tracking

The midpoint tracking extension included in the localization algorithm to enhance
correct data association has served its purpose and were successful in differentiating
collinear landmarks from each other. A similar improvement that could have been
implemented instead of it is the inclusion of the landmark endpoints. Apart from
supplementing feature matching even further, endpoint tracking would also enable
easy plotting of the detected landmarks in the case of SLAM. Its implementation
would not be very troublesome either. Instead of tracking a single point in the mid-
point extension case, we would have the two endpoints of the extracted features. In
spite of the doubled calculation cost, it is worth incorporating in the algorithms.

Submaps

In the scenario of executing the SLAM algorithm in a large area where there exist a
lot more landmarks than how many we had in the custom environment we designed,

90 Chapter 9. Discussion

it would not be possible to build a global landmark map due to computational cost
it would bring. Instead, keeping track of submaps and doing calculations on them
would decrease the execution time of the SLAM algorithm [90].

Autonomous Navigation

It is mentioned in the introduction chapter that SLAM is a fundamental problem in
the field of robotics, enabling autonomous applications such as self-driving cars. With
the fulfilment of this thesis, we have acquired a foundation for SLAM research and
we would very much like to continue our investigation in more advanced techniques
currently being developed during our Master’s programmes. However, autonomous
navigation is also an interesting topic that we have set our eyes on. It builds upon
Simultaneous Localization and Mapping, thus seems to be an appropriate path for us
to follow.

Visual SLAM

Research on the state of the art SLAM techniques have shown us the prevalence and
superiority of visual SLAM methods in the literature. Building upon that, the next
step in pursuit of training ourselves in the field of SLAM should be towards studying
image processing methods and working on SLAM solutions that are based on visual
input from the environment. We can always make use of our LiDAR-based SLAM
knowledge and complement a camera-based technique with it for superior results.

Performance Evaluation

Even though the results obtained from the Python simulation have pointed out the
successful working of the implemented SLAM algorithm, a better way of investigating
its performance would be making a comparison of the achieved results with the ones
of a well-known open-source SLAM library. This way, the validity of our simulation
results would have also been inspected. Another performance evaluation metric, we
missed in this thesis, is the odometry data. If we have implemented the concepts of
this thesis on a real mobile robot and possessed odometry information from it, we
would be able to better underline the importance and neediness of Kalman filtering.

SLAM Paradigm

In this thesis, the chosen SLAM paradigm has been the Kalman filter family, the EKF
more specifically. In Chapter 4, the drawbacks of EKF and its alternatives from the
Kalman filter paradigm have been discussed. On top of that, another approach to
the SLAM problem can be investigating other SLAM paradigms such as the graph-
based optimization techniques and the particle methods. These techniques remain
undiscovered from our point of view.

Chapter 10

Conclusion

Simultaneous Localization and Mapping is an abundantly studied and profoundly
complex problem in robotics, whose solutions find countless relevant applications

in modern society. As autonomous machines are indelibly morphing into a corner-
stone of global industries, it is becoming increasingly clear that SLAM is not, by
any means, merely a subject of mathematical curiosity for researchers, but a central
component of future human-robot cooperation. As we are witnessing the prominent
emergence of self-driving cars, there is no question why there seems to be an endless
chain of enhancements being constantly put forward to enable a more wide-spread
usage of SLAM technologies.

The present thesis constitutes our humble first step in a journey towards gain-
ing insight into advanced robot navigation and perception techniques. The work
described throughout the preceding chapters embodies an interpretation of the well-
known fundamentals, with an imperfect, but fruitful outcome. The aim was to analyze
and develop a SLAM solution for indoor environment applications and, in the process
of attaining it, several building blocks have been carefully dissected, comprehended
and described on an individual level.

The extended flavour of the Kalman Filter optimal estimator constitutes the very
backbone of the project, for it represents the means of iteratively computing the belief
of the robot about its state. Stochastic modeling of the vehicle’s interaction with the
environment was done via a probabilistic velocity motion model and a feature-based
measurement function. What we defined as useful features to be extracted from the
environment with a 2D LiDAR sensor were geometrical primitives in the form of
lines and points. In the particular case of rectilinear features, the extraction method
was Split-and-Merge clustering, an algorithm evaluated as adequate in a real indoor
test area. A first challenge in our SLAM mission was developing a localization pro-
gram for achieving robot position tracking, where a data associations policy based on
squared Mahalanobis distance validation gating and nearest neighbour matching was
employed. An enhancement using feature and landmark midpoints has been pro-
posed to reduce correspondence ambiguity. Building on top of this, the EKF SLAM
solution follows, relying on maximum likelihood association, a landmark initializa-

91

92 Chapter 10. Conclusion

tion strategy and the maintenance of confirmed and tentative landmark lists. For
both EKF localization and Simultaneous Localization and Mapping, the mathematical
derivations are delineated.

The performance of the localization and the SLAM algorithms has been assessed
by running Python simulations in a designed environment. In both cases, low-
uncertainty high-fidelity estimates of the true position have been achieved, substan-
tiating algorithmic correctness in tracking a noisy path. Regarding mapping, around
three fourths of the true landmarks have been discovered without controls for optimal
map acquisition being provided. As far as simulation is concerned, the results were
more than satisfactory.

Furthermore, a communication network has been constructed in the ROS meta-
operating system, comprising nodes that supplied the measurements, controls and
offered a very realistic simulation environment in the form of Gazebo. Despite re-
lentless efforts, work is still needed to bring the system to a functioning state, before
real-world experiments can be carried out on the robot platform.

Overall, the Bachelor’s thesis does honour to the intricate, yet fascinating, SLAM
problem, by showcasing successful results of the proposed approach.

Bibliography

[1] M. Montemerlo et al. FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping
Problem. http://robots.stanford.edu/papers/montemerlo.fastslam-tr.pdf.

[2] Y. Latif, C. Cadena, and J. Neira. “Robust Loop Closing Over time for Pose Graph SLAM”. In:
The International Journal of Robotics Research (2013).

[3] C. Cadena et al. “Past, Present, and Future of Simultaneous Localization And Mapping: To-
wards the Robust-Perception Age”. In: IEEE Transactions on Robotics (2016).

[4] A. Kelly. Mobile Robotics: Mathematics, Models, and Methods. Cambridge, 2014.
[5] P. Newman et al. “Explore and return: experimental validation of real-time concurrent mapping

and localization”. In: Proceedings 2002 IEEE International Conference on Robotics and Automation.
2002.

[6] H. Durrant-Whyte and T. Bailey. “Simultaneous Localisation and Mapping (SLAM): Part I The
Essential Algorithms”. In: IEEE Robotics and Automation Magazine (2006).

[7] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. 2nd ed. The MIT Press, 2006.
[8] C. Forster et al. “On-Manifold Preintegration for Real-Time Visual-Inertial Odometry”. In: IEEE

Transactions on Robotics (2017).
[9] S. Lynen et al. “Get Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization”. In:

Proceedings of Robotics: Science and Systems Conference (RSS). 2015.
[10] A.I. Mourikis and S.I. Roumeliotis. “A Multi-State Constraint Kalman Filter for Vision-aided In-

ertial Navigation”. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). 2007.

[11] U. Frese. “Interview: Is SLAM Solved?” In: KI - Künstliche Intelligenz 24.3 (2010), pp. 255–257.
doi: 10.1007/s13218-010-0047-x.

[12] Kuka Navigation Solution. Kuka Robotics. url: https://www.kuka.com/en- se/products/
mobility/navigation-solution (visited on 04/23/2020).

[13] M. Maimone, Y. Cheng, and L. Matthies. “Two Years of Visual Odometry on the Mars Explo-
ration Rovers”. In: Journal of Field Robotics (2007).

[14] ProjectTango. Google. url: https://www.youtube.com/watch?v=Qe10ExwzCqk (visited on
04/23/2020).

[15] Robot Mapping. Albert-Ludwigs-Universität Freiburg. 2013. url: http://ais.informatik.uni-
freiburg.de/teaching/ws13/mapping/ (visited on 04/23/2020).

[16] B. Siciliano and O. Khatib. Handbook of Robotics. 1st ed. Springer, 2008.
[17] S. Thrun. Robotic Mapping: A Survey. 2002.
[18] J. Kshirsagar, S. Shue, and J.M. Conrad. “A Survey of Implementation of Multi-Robot Simulta-

neous Localization and Mapping”. In: SoutheastCon 2018. 2018, pp. 1–7.
[19] C. Leung, S. Huang, and G. Dissanayake. “Active SLAM using Model Predictive Control and

Attractor based Exploration”. In: International Conference on Intelligent Robots and Systems. 2006.
[20] J. Guolai et al. “A Simultaneous Localization and Mapping (SLAM) Framework for 2.5D Map

Building Based on Low-Cost LiDAR and Vision Fusion”. In: Applied Sciences 9.10 (May 2019),
p. 2105. issn: 2076-3417. doi: 10.3390/app9102105. url: http://dx.doi.org/10.3390/
app9102105.

93

http://robots.stanford.edu/papers/montemerlo.fastslam-tr.pdf
https://doi.org/10.1007/s13218-010-0047-x
https://www.kuka.com/en-se/products/mobility/navigation-solution
https://www.kuka.com/en-se/products/mobility/navigation-solution
https://www.youtube.com/watch?v=Qe10ExwzCqk
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/
https://doi.org/10.3390/app9102105
http://dx.doi.org/10.3390/app9102105
http://dx.doi.org/10.3390/app9102105

94 Bibliography

[21] T. Taketomi, H. Uchiyama, and S. Ikeda. “Visual SLAM algorithms: a survey from 2010 to
2016”. In: IPSJ Transactions on Computer Vision and Applications (2017).

[22] C. Debeunne and D. Vivet. “A Review of Visual-LiDAR Fusion based Simultaneous Localiza-
tion and Mapping”. In: MDPI Sensors (2020).

[23] J. Civera and S. H. Lee. “RGB-D Odometry and SLAM”. In: RGB-D Image Analysis and Process-
ing. Cham: Springer International Publishing, 2019, pp. 117–144. doi: 10.1007/978-3-030-
28603-3_6.

[24] G. Grisetti, C. Stachniss, and W. Burgard. “Improved Techniques for Grid Mapping With Rao-
Blackwellized Particle Filters”. In: IEEE Transactions on Robotics 23.1 (2007), pp. 34–46.

[25] K. Konolige et al. “Efficient Sparse Pose Adjustment for 2D mapping”. In: 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2010, pp. 22–29.

[26] G. Grisetti, C. Stachniss, and W. Burgard. “Improving Grid-based SLAM with Rao-Blackwellized
Particle Filters by Adaptive Proposals and Selective Resampling”. In: Proceedings of the 2005
IEEE International Conference on Robotics and Automation. 2005, pp. 2432–2437.

[27] S. Thrun. “Particle Filters in Robotics”. In: Proceedings of the 17th Annual Conference on Uncer-
tainty in AI (UAI). 2002.

[28] M. Montemerlo and S. Thrun. FastSLAM. Springer, 2007.
[29] S. Kohlbrecher et al. “A flexible and scalable SLAM system with full 3D motion estimation”.

In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. 2011, pp. 155–160.
[30] W. Hess et al. “Real-time loop closure in 2D LIDAR SLAM”. In: 2016 IEEE International Confer-

ence on Robotics and Automation (ICRA). 2016, pp. 1271–1278.
[31] Introduction to Mobile Robotics. Albert-Ludwigs-Universität Freiburg. 2019. url: http://ais.

informatik.uni-freiburg.de/teaching/ss19/robotics/ (visited on 04/10/2020).
[32] R. Yagfarov, M. Ivanou, and I. Afanasyev. “Map Comparison of Lidar-based 2D SLAM Algo-

rithms Using Precise Ground Truth”. In: 2018 15th International Conference on Control, Automa-
tion, Robotics and Vision (ICARCV). 2018, pp. 1979–1983.

[33] P. Abbeel. Scan Matching. https://people.eecs.berkeley.edu/~pabbeel/cs287- fa12/
slides/ScanMatching.pdf.

[34] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. “ORB-SLAM: A Versatile and Accurate Monoc-
ular SLAM System”. In: IEEE Transactions on Robotics (2015).

[35] R. Mur-Artal and J. D. Tardós. “ORB-SLAM2: An Open-Source SLAM System for Monocular,
Stereo, and RGB-D Cameras”. In: IEEE Transactions on Robotics (2017).

[36] D. Vivet, A. Debord, and G. Pagès. “PAVO: A Parallax based Bi-Monocular VO Approach For
Autonomous Navigation In Various Environments”. In: DISP Conference. 2019.

[37] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: Dense tracking and mapping in
real-time”. In: 2011 International Conference on Computer Vision. 2011, pp. 2320–2327.

[38] J. Engel, T. Schöps, and D Cremers. “LSD-SLAM: Large-scale direct monocular SLAM”. In:
European Conference on Computer Vision. 2014, 834–849.

[39] C. Forster, M. Pizzoli, and D. Scaramuzza. “SVO: Fast semi-direct monocular visual odometry”.
In: 2014 IEEE International Conference on Robotics and Automation (ICRA). 2014, pp. 15–22.

[40] J. Engel, V. Koltun, and D. Cremers. “Direct Sparse Odometry”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 40.3 (2018), pp. 611–625.

[41] R. Wang, M. Schworer, and D. Cremers. “Stereo DSO: Large-scale direct sparse visual odometry
with stereo cameras”. In: IEEE International Conference on Computer Vision. 2017, 3903–3911.

[42] R. A. Newcombe et al. “KinectFusion: real-time dense surface mapping and tracking”. In:
Proceedings of International Symposium on Mixed and Augmented Reality. 2011, pp. 127–136.

[43] R. F. Salas-Moreno et al. “SLAM++: Simultaneous Localisation and Mapping at the Level of
Objects”. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013, pp. 1352–
1359.

[44] K. Tateno, F. Tombari, and N. Navab. “When 2.5D is not enough: Simultaneous reconstruc-
tion, segmentation and recognition on dense SLAM”. In: 2016 IEEE International Conference on
Robotics and Automation (ICRA). 2016, pp. 2295–2302.

https://doi.org/10.1007/978-3-030-28603-3_6
https://doi.org/10.1007/978-3-030-28603-3_6
http://ais.informatik.uni-freiburg.de/teaching/ss19/robotics/
http://ais.informatik.uni-freiburg.de/teaching/ss19/robotics/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/slides/ScanMatching.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa12/slides/ScanMatching.pdf

Bibliography 95

[45] D. Galvez-López and J. D. Tardos. “Bags of Binary Words for Fast Place Recognition in Image
Sequences”. In: IEEE Transactions on Robotics 28.5 (2012), pp. 1188–1197.

[46] C. Hsu et al. “Depth measurement based on pixel number variation and Speeded Up Robust
Features”. In: 2014 IEEE Fourth International Conference on Consumer Electronics Berlin (ICCE-
Berlin). 2014, pp. 228–229.

[47] E. Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: 2011 International Conference
on Computer Vision. 2011, pp. 2564–2571.

[48] C. Harris and M. Stephens. “A combined corner and edge detector”. In: Alvey Vision Conference.
1988, 147–52.

[49] J. Shi and C. Tomasi. “Good Features to Track”. In: IEEE Conference on Computer Vision and
Pattern Recognition. 1994, 593–600.

[50] A. E. Johnson et al. “Robust and Efficient Stereo Feature Tracking for Visual Odometry”. In:
2008 IEEE International Conference on Robotics and Automation. 2008, pp. 39–46.

[51] L. Matthies. “Dynamic stereo vision”. PhD thesis. Carnegie Mellon University, 1989.
[52] R. Ng et al. Light Field Photography with a Hand-held Plenoptic Camera. https://graphics.

stanford.edu/papers/lfcamera/lfcamera-150dpi.pdf. 2005.
[53] D. Weikersdorfer, D. Adrian D. B. Cremers, and J. Conradt. “Event-based 3D SLAM with a

depth-augmented dynamic vision sensor”. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA). 2014, pp. 359–364.

[54] H. Kim, S. Leutenegger, and A.J. Davison. “Real-time 3D reconstruction and 6-DoF tracking
with an event camera”. In: European Conference on Computer Vision. 2016, pp. 349–364.

[55] I. Vallivaara et al. “Simultaneous localization and mapping using ambient magnetic field”. In:
2010 IEEE Conference on Multisensor Fusion and Integration. 2010, pp. 14–19.

[56] R. Elbasiony and W. Gomaa. “WiFi Localization for Mobile Robots Based on Random Forests
and GPLVM”. In: 2014 13th International Conference on Machine Learning and Applications. 2014,
pp. 225–230.

[57] Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Review and New Perspec-
tives”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8 (2013), pp. 1798–
1828.

[58] J. Valentin et al. “Exploiting uncertainty in regression forests for accurate camera relocal-
ization”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015,
pp. 4400–4408.

[59] A. Kendall, M. Grimes, and R. Cipolla. “PoseNet: A Convolutional Network for Real-Time 6-
DOF Camera Relocalization”. In: 2015 IEEE International Conference on Computer Vision (ICCV).
2015, pp. 2938–2946.

[60] A. Cadena, A. Dick, and I. D. Reid. “Multi-modal Auto-Encoders as Joint Estimators for
Robotics Scene Understanding”. In: Robotics: Science and Systems Conference (RSS). 2016, 377–386.

[61] D. Eigen and R. Fergus. “Predicting Depth, Surface Normals and Semantic Labels with a Com-
mon Multi-scale Convolutional Architecture”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 2650–2658.

[62] F. Liu et al. “Learning Depth from Single Monocular Images Using Deep Convolutional Neural
Fields”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 38.10 (2016), pp. 2024–
2039.

[63] V. Mohanty et al. “DeepVO: A Deep Learning approach for Monocular Visual Odometry”. In:
(Nov. 2016).

[64] S. Wang et al. “DeepVO: Towards end-to-end visual odometry with deep Recurrent Convo-
lutional Neural Networks”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). 2017, pp. 2043–2050.

[65] X. Ruan, F. Wang, and J. Huang. “Relative Pose Estimation of Visual SLAM Based on Convo-
lutional Neural Networks”. In: 2019 Chinese Control Conference (CCC). 2019, pp. 8827–8832.

[66] S. Vijayanarasimhan et al. SfM-Net: Learning of Structure and Motion from Video. https://arxiv.
org/pdf/1704.07804.pdf. 2017.

https://graphics.stanford.edu/papers/lfcamera/lfcamera-150dpi.pdf
https://graphics.stanford.edu/papers/lfcamera/lfcamera-150dpi.pdf
https://arxiv.org/pdf/1704.07804.pdf
https://arxiv.org/pdf/1704.07804.pdf

96 Bibliography

[67] R. Mahjourian, M. Wicke, and A. Angelova. “Unsupervised Learning of Depth and Ego-Motion
from Monocular Video Using 3D Geometric Constraints”. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2018, pp. 5667–5675.

[68] V. Casser et al. “Unsupervised Monocular Depth and Ego-Motion Learning With Structure and
Semantics”. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 2019, pp. 381–388.

[69] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-scale Image Recogni-
tion. https://arxiv.org/pdf/1409.1556.pdf. 2015.

[70] N. Sunderhauf et al. “Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-
Robust, Training-Free”. In: Robotics: Science and Systems (RSS). 2015.

[71] X Zhang, Y. Su, and X. Zhu. “Loop closure detection for visual SLAM systems using convo-
lutional neural network”. In: 2017 23rd International Conference on Automation and Computing
(ICAC). 2017, pp. 1–6.

[72] G Welch and G Bishop. An Introduction to the Kalman Fiter. https://www.cs.unc.edu/~welch/
media/pdf/kalman_intro.pdf. 2006.

[73] N. Assimakis, M. Adam, and A. Douladiris. “Information Filter and Kalman Filter Comparison:
Selection of the Faster Filter”. In: International Journal of Information Engineering (2012).

[74] R. P. Saputra. “Implementation 2D EKF SLAM for Wheeled Mobile Robot”. MA thesis. Univer-
sity of New South Wales, 2015.

[75] M. Korkmaz, N. Yilmaz, and A. Durdu. “Comparison of the SLAM algorithms: Hangar exper-
iments”. In: Proceedings 2002 IEEE International Conference on Robotics and Automation. 2002.

[76] Paz L. M., J. D. Tardos, and J Neira. “Divide and Conquer: EKF SLAM in O(n)”. In: IEEE
Transactions on Robotics (2008).

[77] A. Garulli et al. “Mobile robot SLAM for line-based environment representation”. In: Proceed-
ings of the 44th IEEE Conference on Decision and ControlProceedings of the 44th IEEE Conference on
Decision and Control. 2005.

[78] R. Negenborn. “Robot Localization and Kalman Filters: On finding your position in a noisy
world”. MA thesis. Utrecht University, 2003.

[79] V. Nguyen et al. “A Comparison of Line Extraction Algorithms using 2D Laser Rangefinder
for Indoor Mobile Robotics”. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2005.

[80] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Autonomous Mobile Robots.
2nd ed. The MIT Press, 2011.

[81] L. R. Munoz, M. G. Villanueva, and C. G. Suarez. “A tutorial on the total least squares method
for fitting a straight line and a plane”. In: Revista de Ciencia e Ingeniería del Instituto Tecnológico
Superior De Coatzacoalcos (2014).

[82] S. Liu et al. “Adaptive Covariance Estimation Method for LiDAR-Aided Multi-Sensor Inte-
grated Navigation Systems”. In: Micromachines (2015).

[83] F. Lu and E. Milios. “Robot pose estimation in unknown environments by matching 2D range
scans”. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 1994.

[84] B. Ochoa and S. Belongie. “Covariance Propagation for Guided Matching”. In: 3rd Workshop on
Statistical Methods in Multi-Image and Video Processing, SMVP. 2006.

[85] D. Simon. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. 1st ed. Wiley Inter-
science, 2006.

[86] J. Solà Ortega. “Towards Visual Localization, Mapping and Moving Objects Tracking by a Mo-
bile Robot: a Geometric and Probabilistic Approach”. PhD thesis. Institut National Politech-
nique de Toulouse, 2007.

[87] E. B. Olson. “Robust and Efficient Robotic Mapping”. PhD thesis. Massachusetts Institute of
Technology, 2008.

[88] C. M. Bishop. Pattern Recognition and Machine Learning. 1st ed. Springer, 2006.
[89] A. J. Cooper. “A Comparison of Data Association Techniques for Simultaneous Localization

and Mapping”. MA thesis. Massachusetts Institute of Technology, 2005.

https://arxiv.org/pdf/1409.1556.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf

Bibliography 97

[90] T. Bailey. “Mobile Robot Localisation and Mapping in Extensive Outdoor Environments”. PhD
thesis. The University of Sydney, 2002.

[91] L. R. Kenari and M. R. Arvan. “Comparison of Nearest Neighbor and Probabilistic Data As-
sociation Methods for Non-linear Target Tracking Data Association”. In: Proceeding of the 2nd
RSI/ISM International Conference on Robotics and Mechatronics. 2006.

[92] Advanced Techniques for Mobile Robotics (Robotics 2). Albert-Ludwigs-Universität Freiburg. 2011.
url: http://ais.informatik.uni- freiburg.de/teaching/ws11/robotics2 (visited on
04/26/2020).

[93] The Relationship between the Mahalanobis Distance and the Chi-Squared Distribution. Thill M., Notes
on Machine Learning, Statistics & Programming. 2017. url: https://markusthill.github.
io/mahalanbis-chi-squared/ (visited on 04/23/2020).

[94] T. Genevois and T. Zielisnka. “A simple and efficient implementation of EKF-based SLAM
relying on laser scanner in complex indoor environment”. In: Journal of Automation, Mobile
Robotics & Intelligent Systems (2014).

[95] S. J. Julier and J. K. Uhlmann. “A counter example to the theory of simultaneous localization
and map building”. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164). Vol. 4. 2001, pp. 4238–4243.

[96] M. W. M. G. Dissanayake et al. “A Solution to the Simultaneous Localisation and Map Building
(SLAM) Problem”. In: IEEE Transactions on Robotics and Automation (2001).

[97] Simultaneous localization and mapping with the extended Kalman filter. 2014. url: http://www.
joansola.eu/ (visited on 05/01/2020).

[98] P. M. Newman. “On the Structure and Solution of the Simultaneous Localisation and Map
Building Problem”. PhD thesis. The University of Sydney, 1999.

[99] A. Martinez and E. Fernández. Learning ROS for Robotics Programming. 1st ed. Packt Publishing,
2013.

[100] M. Quigley, B. Gerkey, and W.D. Smart. Programming Robots with ROS. 1st ed. O’Reilly Media,
2015.

[101] W.S. Newman. A Systematic Approach to Learning Robot Programming with ROS. 1st ed. CRC
Press, 2018.

[102] ROS.org: TurtleBot3. url: http://wiki.ros.org/turtlebot3 (visited on 06/03/2020).
[103] Robots e-Manual TurtleBot3. url: http://emanual.robotis.com/docs/en/platform/turtlebot3/

overview/ (visited on 06/03/2020).
[104] ROS.org: messagefilter. url: http://wiki.ros.org/message_filters (visited on 06/03/2020).

http://ais.informatik.uni-freiburg.de/teaching/ws11/robotics2
https://markusthill.github.io/mahalanbis-chi-squared/
https://markusthill.github.io/mahalanbis-chi-squared/
http://www.joansola.eu/
http://www.joansola.eu/
http://wiki.ros.org/turtlebot3
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://wiki.ros.org/message_filters

Appendix A

Line Landmarks

A.1 Derivation of the Sensor Model

Consider the two situations in Figure A.1, which is actually just a slightly simplified
version of Figure 5.3, but with some additional helpful constructions.

θ

(0, 0) x

y

rj

αiρi

ψj

θ

(0, 0) x

y

rj

αi

ρi

ψj

ψj

1 2 12

ψj

Figure A.1: Illustration of the robot’s onboard sensor measuring the relative position of a line land-
mark. Left: lp ∩ lj = ∅; Right: lp ∩ lj 6= ∅

Let us start by looking to the left side of the figure. In the triangles labeled with
1 and 2, the sides coloured in magenta have the expressions x cos(ψj) and y sin(ψj),
respectively. From the figure, it is now obvious that subtracting these two segments
from rj will yield ρi. From the figure again, we see that αi is obtained very easily
as well, by subtracting the heading of the robot from ψj. These will give the sensor
model when no intersection occurs.

98

A.2. Line Segment Extraction for Landmark Visualization Purposes 99

[
ρi

t
αi

t

]
=

[
rj − x cos(ψj)− y sin(ψj))

ψj − θ

]
(A.1)

When there is indeed an intersection, the derivation is quite similar, although a
bit less straightforward. Looking at the right side of Figure A.1, we see that ψj is a
negative angle. To arrive at the sensor model expression through geometrical means
in this case, we need therefore to use the positive −ψj. With this observation in mind,
we again shift our attentions to the lines coloured in magenta in triangles 1 and 2,
expressed as x cos(−ψj) and y sin(−ψj), respectively. We can get ρi by subtracting rj
and y sin(−ψj) from x cos(−ψj). The angular parameter αi is obtaoned by noting that
θ, αi and −ψj should sum to π.[

ρi
t

αi
t

]
=

[
−rj + x cos(ψj) + y sin(ψj))

ψj − θ + π

]
(A.2)

A.2 Line Segment Extraction for Landmark Visualiza-
tion Purposes

The content of this section is entirely based on [81], and the relations given here
are utilized in the project for plotting purposes once line landmark parameters are
extracted. Let us denote by ζi

h the vector of coordinates [xi
h yi

h]
> and by λ, the vector

of the mean values of the Cartesian coordinates for all the points belonging to the i-th
cluster of points. Thus, λ = [x̄i ȳi]>. In order to extract segments from the already
extracted infinite-line parameters, we employ Equation A.3:

ζi
h,R = R−αi

t
(ζi

h − λ) (A.3)

where

Rα =

[
cos(α) − sin(α)
sin(α) cos(α)

]
(A.4)

is the 2D-rotation matrix that rotates a vector counterclockwise by the angle α.
Using Equation A.4 rotates all the points belonging to the segment Si by the angle
−αi

t around the mean of these points, whereas Equation A.3 effectively moves the
mean of the line segment to the frame’s origin.

It is obvious that now the line of best fit for the cluster of ζi
h,R points is perfectly

vertical in the local frame, and a finite-length segment can be elucidated by finding the
endpoints ei

1,R = [0 yi
min]

> and ei
2,R = [0 yi

max]
> corresponding to the minimum and

maximum yi
h,R values, respectively. We can then apply the reciprocal of Equation A.5

to get the segment endpoints in the initial configuration, as shown in Equation A.5:

ei
k = Rαi

t
ei

k,R + λ, where k ∈ {1, 2} (A.5)

Appendix B

Maximum Likelihood Association

The likelihood of associating the measurement zi
t with the landmark mj is given by

the following equality, where νi = zi
t − ẑj

t is the n-dimensional innovation vector and
Sj

t is the n× n innovation matrix:

pi =
1√

det (2πSj
t)

exp
(
−1

2
ν>i [S

j
t]
−1νi

)
(B.1)

Taking the natural logarithm on both sides of Equation B.1, gives:

ln pi = − ln
√

det (2πSj
t)−

1
2
ν>i [S

j
t]
−1νi

= − ln ((2π)n/2
√

det (Sj
t))−

1
2
ν>i [S

j
t]
−1νi

= − ln ((2π)n/2)− 1
2

ln (det (Sj
t))−

1
2
ν>i [S

j
t]
−1νi

= − ln ((2π)n/2)− 1
2
(ln(det (Sj

t)) + ν
>
i [S

j
t]
−1νi)

(B.2)

The leftmost term on the right side of the equality in Equation B.2 is a constant for
a fixed n and therefore does not influence the maximization of ln pi. Thus, we have
that the maximum log-likelihood is given by:

argmax
j

ln pi = argmax
j
−1

2
(ln(det (Sj

t)) + ν
>
i [S

j
t]
−1νi) (B.3)

We can transform this optimization problem in a minimization by multiplying
both sides by −2. This is how one arrives to the equivalent objective of identifying
the minimum normalized log-likelihood Ni (the normalized distance):

argmin
j

Ni = argmin
j

ν>i [S
j
t]
−1νi + ln(det (Sj

t)) (B.4)

In deriving the proof shown in this appendix, the material discussed in [89, 90]
has been utilized.

100

Appendix C

SLAM Covariance Augmentation

When a new confirmed landmark needs to be added to the map, the inverse measure-
ment model should be employed. A landmark is generated from an observation in
the sensor frame and the global estimated position of the robot.

mN+1 = f(xt, wt, κ) (C.1)

The state vector yt after the addition can be written as:

yt =

[
yt

mN+1

]
=

[
yt

f(xt, wt, κ)

]
= ξ(xt, m, wt, κ) (C.2)

where yt = [xt m]> is the state after the Kalman prediction step. Introducing
the notation qt = [xt m, xt]> writing now the first-order Taylor expansion of
ξ(xt, m, wt, κ) at the linearization point (µt,x,µt,m, zi

t), which is the mean of qt, will
yield the covariance mapping:

Σt = Ξt

Σt,xx Σt,xm 03×2
Σt,mx Σt,mm 0N×2
02×3 02×N Ri

t

Ξ>t (C.3)

Matrix Σt is the covariance of the augmented state yt and Ξt is the Jacobian:

Ξt =
∂ξ(xt, m, wt, κ)

∂qt

∣∣∣∣
µt,x, µt,m, zi

t

=

 I3×3 03×N 0N×2
0N×3 IN×N 0N×2
Ft,x 02×N Ft,w

 (C.4)

Performing the multiplications leads to the sought expression for the augmented
state covariance matrix, suitable for efficient implementation:

Σt =

 Σt,xx Σt,xm (Ft,xΣt,xx)>

Σt,mx Σt,mm (Ft,xΣt,xm)>

Ft,xΣt,xx Ft,xΣt,xm Ft,xΣt,xxF>t,x + Ft,wRi
tF
>
t,w

 (C.5)

We used [90] as the main reference in writing this appendix.

101

	Front page
	Title page
	Contents
	List of Figures
	Preface
	1 Introduction
	2 State of the Art
	2.1 LiDAR-based SLAM
	2.2 Visual SLAM
	2.3 Recent Trends in SLAM

	3 System Description
	4 State Estimation
	4.1 The Kalman Filter
	4.1.1 Kalman Filter Algorithm
	4.1.2 Kalman Filter Example

	4.2 Extended Kalman Filter
	4.2.1 Linearization
	4.2.2 Drawbacks of EKF
	4.2.3 EKF Alternatives

	5 Modeling
	5.1 Motion Model
	5.2 Measurement Model
	5.2.1 Feature-Based Observation Model for Point Landmarks
	5.2.2 Feature-Based Observation Model for Line Landmarks

	5.3 Extraction of Line Features
	5.3.1 Segmentation
	5.3.2 Line Model Parameter Estimation
	5.3.3 Line Feature Covariance Estimation
	5.3.4 Split-and-Merge Implementation with LiDAR
	5.3.5 LiDAR Noise Distribution

	5.4 The Data Association Problem

	6 Localization
	6.1 Definition of the Localization Problem
	6.2 Mathematical Derivation
	6.3 Data Association
	6.3.1 Maximum Likelihood Association
	6.3.2 Validation Gating
	6.3.3 Correspondence Enhancement for Line Features

	6.4 EKF Localization Algorithm
	6.5 Simulation of EKF Localization
	6.5.1 Simulation Setup
	6.5.2 Simulation Results

	7 Simultaneous Localization and Mapping
	7.1 Definition of the SLAM Problem
	7.2 Mathematical Derivation
	7.3 Landmark Initialization
	7.4 Data Association
	7.4.1 Tentative Landmark List
	7.4.2 Correspondence Enhancement for Line Features

	7.5 EKF SLAM Algorithm
	7.6 Simulation of EKF SLAM
	7.6.1 Localization Performance
	7.6.2 Mapping Performance

	8 ROS Implementation
	9 Discussion
	10 Conclusion
	Bibliography
	A Line Landmarks
	A.1 Derivation of the Sensor Model
	A.2 Line Segment Extraction for Landmark Visualization Purposes

	B Maximum Likelihood Association
	C SLAM Covariance Augmentation

