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System Diagram
The following diagram shown in Figure 1, demonstrates how each of the components in the

system interact for the drone to �y continuously.

Figure 1: System Diagram
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Perception
Perception is a crucial component for our system. As can be seen in Figure 1, it consists of

the Tra�c sign detector node and the Aruco dectector node. Moreover, the Aruco perception

component was provided as a built-in functionality, hence this section will mainly discuss the

tra�c sign detection.

Our approach to �nding the pose of tra�c signs, involves Deep Neural Networks (DNNs)

and other image analysis techniques such as SIFT and RANSAC. Considering the DNNs, we

initially utilized MobileNet. However, we encountered that with this approach the detection

and classi�cation of tra�c signs was not fast enough to assist in localization. As such, we

shifted to the use of SqueezeNet, which actually sped up the process by approximately 4

times. For training the network, the provided dataset of images was combined with the images

we took and the ones shared by the other groups. Moreover, in the end, the images given by

other groups were not utilized. One of reasons being di�erence in labelling and having no

improvement in performance with them.

Apart from the layers hidden in SqueezeNet, we had 3 additional layers. The input to the

network is an image and the output is a 39 × 29 × 20 tensor. This means, for each grid cell we

have (x, y, w, ℎ) and the probabilities for each tra�c sign class. In the end, we get a bounding

box for the detected sign and the class prediction. Going on a tangent, on starting this detector

node, the SIFT (Scale-Invariant Feature Transform) algorithm is run for the tra�c sign classes

and the output is stored. The SIFT output for the region inside the bounding box (from DNN)

is then compared to the one calculated initially, for the predicted class. This allows us to do

feature matching and remove some outliers. Following this, we use the Brute-Force matcher

to further help the matching process. Finally, using RANSAC, we are able to get the transform

from camera_link to the sign. It is worth mentioning that we also tried using ORB for faster

3D pose estimation, however, SIFT provided faster and accurate results.

Localization
The need for localization is solidi�ed by the fact that none of the planning techniques can be

applied if the drone is unaware of its position in the map. Accordingly, we had the option of

either using a Kalman Filter or a Patricle Filter to get good drone pose estimates. We opted to

use the Kalman Filter, the reason being that the system we have is linear and also that it allows

for a less computationally heavy approach. This turned out to be a good choice, because both

the perception and the planning components were computationally intensive. In terms of the

actual implementation, the localization process is best encapsulated by the diagram in Figure

2.

An aspect that is crucial to the discussion of our localization system, is noise models. Initially,

we started with experimentally found static noise models for both process and measurement

noises. With the inclusion of tra�c signs in the pose estimation process, we opted to go for

separate noise models for Aruco markers and tra�c signs. As it turned out, the pose estimates

for the tra�c signs is comparatively worse than the Aruco markers, thus the noise models

for the tra�c signs were made to represent this higher uncertainty. On top of this, we are

also doing adaptive noise adjustment. It is done such that, at each step of the Kalman �lter,

we use the innovation to adaptively adjust the process noise R and the residual to adjust the

measurement noise Q. The adaptive noise adjustment is implemented based on [1].
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Figure 2: Localization Process

Finally, data association is a detail that needs to be mentioned to make this discussion complete.

This becomes unavoidable, when all the markers in the map are of the same id. Therefore, we

utilized maximum likelihood association with Mahalanobis distance to �nd the most likely

measurement. Apart from that, we also discarded any measurements that were too far away.

Planning
As it can be seen in Figure 1, planning is the component responsible for the motion of the

drone. This section aims on exploring the implementation of the planning process in�uenced

by et al. [2]:

Gridmap

The exploration process is heavily dependent on the generated occupancy grid. It is initialized

with unexplored and in�ated regions, which is then updated as the drone explores the envi-

ronment by visiting Frontier points. In context of this implementation, the frontier points are

those that lie in the unexplored regions. The Local frontier node is responsible for updating

the gridmap by marking the cells within a certain radius around the current drone location as

explored.

Local and Global Frontier Nodes

Based on RRT, both of these nodes generate explorable frontier points. The Local frontier node,

works such that it builds an RRT tree from the drone location and as soon as it �nds a point

belonging to an unexplored region, it sends it to the Filter node. The Global frontier node, also

performs a similar procedure. Moreover, a key di�erence between these two is that the local

frontier node resets its tree every time it �nds a new frontier point, and restarts again from the

current robot location. On the other hand, the global node keeps on growing from the start

position of drone and never resets. The need for having these two separate point generators

is justi�ed by the reasoning that the local node increases the chance of �nding points in an

unexplored space, as it starts from the drone location. The global node, on the other hand

ensures that small corners are not left unvisited. The local node also helps in providing points

when the global node becomes slow due to continuous growth of the tree since the start.
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Filter Node

The points that are received from the Local and Global Frontier Nodes, can have multiple closely

spaced points. Therefore, to avoid computations on similar points, we use mean shift clustering

to cluster the obtained frontier points and just keep the center of these clusters. After obtaining

the cluster centers, of these that lie either in an already explored region or in�ated space are

discarded. Now, the Task Allocator node can choose from these select few points.

Task Allocator Node

This node can actually be considered the brain of the system, as it makes the decisions which

help in exploration. It has continuous stream of explorable points from the Filter node, which

are then processed to choose the next region to explore. For all the points it receives, a

revenue/score is calculated, this is the combination of information gain and the cost to reach

that point. To simplify the problem, the cost is the straight line distance between the drone and

the frontier point. On the other hand, the information gain is the area of the unknown region

which will be explored if this point is chosen. In our implementation, the information gain is

given more importance (through higher weights). Subsequently, after computing the revenue

for all points, the one with the highest revenue is chosen and given to the Path planner.

Planner Node

This node is responsible for planning an obstacle free path, given the �nal destination and the

current location of the drone. When considering the problem of path planning, there were

various techniques available, however, the major contenders were A* and RRT. We opted to

implement RRT, given that it is a sample based method, as opposed to A*, a grid based method.

Being sample based, allowed for an easier shift from 2D to 3D planning. On the contrary, A*

would have required setting up an OctoMap to plan paths in 3D. Therefore, considering the

computation costs and the convenience of upgrading, RRT was the chosen method.

Without going too much into details, the implemented RRT planner builds a random tree

starting from the location of the drone. The expansion of the tree is stopped, once one of

the branches’ endpoint is close to the �nal point. The preliminary path from RRT, is then

smoothened. At each of the points on the path, the yaw of the drone is decided such that the

drone is facing towards the nearest marker. Finally, the path with yaw set, is published for the

Brain node to implement.

Brain Node

This node is mainly responsible for publishing the planned path points, and making sure that

the drone follows the given path. It receives the path from the Planner node and in a piecemeal

fashion publishes the setpoints. It also keeps track of the robot state i.e. moving or stationary,

which is utilized by other processes such as Localization and Task allocator.
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