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Abstract

The study of self-grooming behavior of mice on a neu-
ral level is important as the mice serve as models for us
humans, and this therefore gives us a better understand-
ing of the neuroscience of human behaviors. Using com-
puter vision based frameworks to study behavior has be-
come increasingly popular, as it allows for efficient analy-
sis of videos displaying certain behavioral patterns. How-
ever, many of the approaches using these frameworks lack
generalizability, and only works accurately given the same
experimental settings. In this work we explore the ability to
model mice self-grooming behavior using the computer vi-
sion based framework DeepLabCut for trajectory extraction
in combination with machine learning methods for trajec-
tory classification. In particular, the trajectories extracted
from using DeepLabCut are annotated and are modeled in
a supervised manner using both an LSTM network and a
TDA approach. We show that we are able to accurately dis-
tinguish the grooming trajectory sequences from the non-
grooming ones which is evident given the evaluation of the
LSTM network.

1. Introduction
The study of behavioral patterns is essential for the un-

derstanding of the brain [13]. A goal of neuroscience is
therefore to understand the relationship between behavior
and neural activity [6].

Self-grooming is a complex innate behavior represented
by a sequence of action patterns and is the most fre-
quently performed behavioral activity in rodents. The self-
grooming behaviour is involved in the rodent hygiene main-
tenance and physiological processes such as thermoregula-
tion, social communication and de-arousal. The study of
self-grooming in rodents is potentially useful for transla-
tion neuroscience research given that humans also involve
in self-grooming behavior during stressful situations or in
the case of certain neuropsychiatric disorders. Being able to
understand the self-grooming behavior in rodents can there-
fore serve as a baseline that can be used to understand the

neural basis of the self-grooming behavior in humans, both
in normal conditions and in the case of neural disorders.
The understanding of the neural circuits involved in the self-
grooming activity is therefore of great importance, and is a
way for us to get better knowledge of behavior, neural dis-
orders and their potential treatments [2].

Given the recent advances in computer vision behaviour
can be studied with the help of markerless pose estimation
tools, which notably simplifies the analysis of behavioural
patterns and allows for high accuracy pose estimates [13].
A pose estimation tool that has become increasingly pop-
ular is DeepLabCut, which by the help of transfer learning
principles and their convenient interface allows for easy and
efficient pose estimation tracking.

Although automated systems such as DeepLabCut pro-
vides quick and efficient pose estimation tracking services,
most of them have proven to only be able to recognize be-
haviors displayed in the exact same setting as the training
setting. Which in practice is good if you only focus on stan-
dardized testing scenarios, where the mice and the cages are
representative of the training setting. In practice however
the this is not the case, and both the mice acts very spon-
taneously and the cage or video settings might be different
[15].

An important practice when developing algorithms for
rodent or mice behavior detection is therefore to analyse
the ability for the pose estimation tool and the resulting be-
havior detection models to generalize over multiple testing
settings.

2. Related Work
The self-grooming behavior of mice has previously been

studied by [14], where the authors analysed self-grooming
as sequential execution of 5 discrete action phases in order
to draw conclusions about the neural circuits involved in the
self-grooming phases. The authors modelled the transition
probabilities between the grooming phases using Markov
models, along with modelling the termination probabili-
ties of the grooming sequences. Additionally the authors
showed that the neurons in cortical and striatal circuits to-
gether are involved in the encoding of the action sequences
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displayed in the grooming phases.
The authors of [10] proposed of a method of using a

convolution recurrent neural network (CRNN) in order to
detect scratching behavior of mice. The scratching behav-
ior was induced by injecting a chemical acid into the back
of the mouse. Videos of the mice were then recorded, and
each image frame was manually labelled as scratching or
non-scratching. The CRNN was then trained in a super-
vised manner using the labeled data and evaluated using a
hold-out dataset. The CRNN model could accurately distin-
guish between scratching and non-scratching, and obtained
a sensitive (recall) score of 81.6% along with a positive pre-
dictive rate (precision) of 87.9%. The major distinguishing
part of the proposed method compared to ours, is that they
trained the CRNN model directly on the images while we
trained our models on the trajectories obtained by DeepLab-
Cut.

The authors of [5] proposed using Topological Data
Analysis (TDA) given the objective of activity recognition
using pose estimates of human body-parts. The authors ex-
amined the recognition of five activities, walking, waving,
sitting bicycling and golfing. They showed that all activities
accuracy could be segmented and recognized achieving an
accuracy of >0.97% for all activities.

3. Problem Description
The goal of this study is to analyse, quantify and clas-

sify the self-grooming behaviour of mice given their move-
ment patterns using pose estimates obtained by mice video
recordings. The pose estimates will be provided by the pose
estimation tool DeepLabCut, in which multiple configura-
tions will be experimented with in order to obtain accurate
pose estimate trajectories from the mice videos. The trajec-
tories will then be used to train different statistical models
with the objective of being able to distinguish between self-
grooming and normal behavior.

4. Methodology
4.1. DeepLabCut

An integral component of this project is the DeepLab-
Cut (DLC) toolbox [12][13], but before we discuss that, it
is crucial to first understand the idea that motivates its use.
As the title of the report implies, we are interested in detect-
ing and tracking the Mice behaviours. The behaviors of in-
terest such as grooming, involve complex set of movements
among the body parts. Therefore, tracking just the position
of the mouse as a whole, is not enough. What we need is a
method that could track each and every body part of interest.
Generally, when tracking distinct body parts, marker-based
methods are utilized, whose tracking is dependent on the
placement of reflective markers on each body part. More-
over, two main reasons discouraged the use of marker-based

methods in our application.
First, the team at Karolinska Institute (KI), aims at cap-

turing situations in which the mouse is unencumbered by
any external parameters that could influence behavior. As
one could imagine, placement of external markers on the
body would certainly influence some change, especially if
the mouse is not given the time to accommodate. Second,
there is the matter of ethics, we need to take into consid-
eration if the placement of markers would affect a mouse’s
well-being. For example, the nose is an important region of
interest in this project, but it’s also a highly sensitive area for
the mouse, therefore, a marker on the nose can be harmful.
Taking the above mentioned points into account, our only
option was to use marker-less tracking and this is where
DLC comes in.

DeepLabCut is a toolbox for non-invasive, marker-less
pose tracking of animals performing different tasks. At the
base of it, DLC is a modification of DeeperCut [8], which is
another neural network based pose tracking method. How-
ever, DeeperCut requires thousands of frames to be labelled
with body part positions. In comparison, DLC only needs
a minimal training dataset (50-300 frames). DLC is able
to achieve this through transfer learning, where it relies on
the pre-trained weights from ImageNet [4]. By using the
pre-trained ImageNet as base, DLC automatically gains the
ability to detect and distinguish general objects such as dog,
mouse etc. Facilitated by this, it becomes much easier for
the network to learn to detect further specific body parts like
mouse’s feet or nose.

DeepLabcut comes equipped with several features and
going into each of their details is outside the scope of this
project. Regardless, the features which entailed significant
use, will of-course be specified.

4.2. Data Collection and Preparation

A considerable part of this project consisted of going
through cycles of data analysis and changing parameters
to obtain reliable data. At the rawest form, the mouse be-
haviours are captured in video recordings, where a single
mouse is recorded while it goes though its normal motions.
It is worth noting that throughout the recording process,
care is taken towards keeping the human intervention to a
minimum, such that the mouse remains undisturbed.

4.2.1 General Outline

Now, prior to discussing the individual components, it
would be helpful to briefly go over some crucial steps in
the data collection process. Starting with the video record-
ings, the goal is to extract the body part locations in each
frame of the video. As a result, the combined output from
a video is in the form of pose trajectories. Considering that
the behaviours are captured onto a 2D medium (i.e video
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or frame), the trajectories are thus formed by x and y pixel
co-ordinates of the tracked appendage. The reader might
recognize that this is where DeepLabCut (DLC) is utilized.
The next step involves establishing a DLC model that could
predict these trajectories. At the very least, this requires
an image dataset consisting of labelled body part locations.
In our case, every image in this dataset is manually labelled.
The DLC-model, after training, is then utilized to make pre-
dictions on the raw videos and finally we end up with the
desired time series trajectories. Figure 1 describes this gen-
eral outline with some additional components from further
sections. After this, the data is modified or augmented ac-
cordingly to suit the detection and classification methods.

Figure 1: Data Collection Pipeline

4.2.2 Recording Raw Data

The videos for this project were recorded at the research fa-
cility in Karolinska Institute. For the record session, a sin-

gle mouse is selected and then placed in a transparent glass
cage. In the videos, we observed that at the beginning, the
mouse is mostly moving around the cage and the groom-
ing periods are short and far in-between. This, as we were
told, could be because of the mouse’s curiousness about the
new environment (the cage). Once this acclimation period
is over, the mouse grooms more often and these periods of
grooming are much longer in duration. Another interesting
fact is that most of the grooming occurrences were observed
in the same corner of the cage. We are not really sure why
this happens, or if this trait will persist in a different mouse.
Moreover, with regard to the current project, due to above
mentioned traits, you will observe that points in the groom-
ing plots are concentrated in a single corner of the image.

Recording Conditions Going back to raw videos, the
conditions in which the mice are recorded hold significant
impact on the tracking results. Hence, there is merit to a
discussion about the following conditions:

1. Frames per second (FPS) for recorded videos

2. Light conditions and Background

3. Camera Placement

Frame Rate Grooming has been mentioned quite often
until this point, but what exactly happens during it? Al-
though this question motivates the whole premise of this
project, to put it simply, grooming involves rapid paw and
head movements with the mouse repeatedly rubbing its nose
using the paws (among other traits). This is where the FPS
rate becomes a decisive factor. As we know, a low frame
rate can result in motion blur and due to the fast paced mo-
tion of grooming, we often end up with stills in which the
appearance of the paws is changed (they look blurry and
stretched). This often leads to the predictions from DLC
being incorrect for such frames.

Lighting The lighting serves the purpose of facilitating
the visibility of appendages. Howbeit, it was outside the
realm of possibility to have brightly lit recording conditions.
According to our contact researcher at Karolinska Institute
(KI), bright lights can stimulate stress in the mice and thus,
apart from the ethical standpoint, it would defeat the pur-
pose of this endeavour.

Camera Placement The project began with us receiv-
ing some video clips from KI. In our assessment of those
videos, we found that there were instances where the mouse
was grooming with its back towards the camera. Noting that
the number of times a mouse grooms is much smaller as
compared to its other idiosyncrasies. Therefore, every oc-
casion of grooming is valuable data which later affects the
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classification process. Such unbalancedness of behaviours
and difficulties associated with it, will entail its own discus-
sion in the later sections. Moreover, the point here is that
the camera placement should be chosen such that it captures
grooming as best as possible. Also, since we are mapping
3D motion (in real life) to 2D (in video), it is impossible to
get completely occlusion free data. Adding to that, we can-
not control where the mouse faces w.r.t the camera when
grooming.

Keeping all these points in mind, we recorded the mouse
from two different camera angles. Please note that even if
there were two cameras recording at the same time, their
videos are treated as separate entities. The idea behind the
use of multiple cameras is to compare the obtained data and
use the one in which the visible grooming ratio is higher.
The video from the remaining angle can be used to test the
generalization of our models.

Final Parameters The above insights have been realized
through iterations of parameter variation and evaluation of
their effects on DLC trajectories. The final classification
was done on videos of the same mouse, recorded at 50 FPS
(maximum for the camera provided to us at KI), with a res-
olution of 1920 x 1080 and close to no external light. In
total, we obtained 3 hours long video data (approximately
540,000 frames) from two different camera angles. So, for
each angle, we have around 1.5 hours of recording.

4.2.3 Obtaining Trajectories using DeepLabCut

Tracked Bodyparts There has been a significant mention
of tracking, but which parts to track? A curious reader
might remember that grooming involves nose and paws.
Apart from this, the mouse also brushes the ears with its
paws during the grooming phase. Hence, primarily, we are
interested in tracking the nose, left ear, right ear, left paw
and right paw. All these parts are generally in motion in
all behaviours, but something that distinguishes grooming
is that the mouse as a whole is stationary with respect to
the cage. This is also reflected in the tail-base and the hind
legs, which are relatively still during grooming. As a re-
sult, tracking these parts could be beneficial in detection and
classification of behaviours.

The following 8 parts are tracked: Nose, Left Ear, Right
Ear, Left Paw, Right Paw, Tail Base, Left Foot, Right Foot.
Figure 2, illustrates these parts.

Image Dataset DeepLabCut provides the functionality to
extract frames from videos and to manually label the re-
gions of interest in all these frames. In our case, we initially
extracted 320 frames from a 1 hour long video, consist-
ing of all kinds of behaviours. These frames are randomly
sampled from a uniform distribution by k-means clustering

Figure 2: Tracked Bodyparts

based on visual appearance. This is done to obtain a dataset
which represents the whole range of movements and not just
for a single behavioral aspect. There is also the possibility
to extract frames manually. Nonetheless, due to varied na-
ture of movements throughout the video, it was fitting to
use the clustering method. When it came to labelling the
extracted frames, only those bodyparts which were clearly
visible in a particular frame were marked and it was made
sure that the labels are consistent along the whole dataset.

DLC training Naturally, the next step in the pipeline is
training using the labelled dataset. For that, an ImageNet
pre-trained network (for example: ResNet 50, ResNet 101
or MobileNet) should be selected. In our trials with
these networks, ResNet 101 offered the best tracking re-
sults. Consequently, the final DLC model was trained us-
ing ResNet 101. The model was trained for 117500 itera-
tions and achieved the lowest cross-entropy loss of 0.00071.
The loss curve over the training iterations is shown in Fig-
ure 3. When considering the pixel error, i.e. the difference
between location of predicted position and the labelled po-
sition, the model peaked at 6.37 pixel error on the train set
and 20.26 on the test set. This model is then used to predict
trajectories for the videos.

Evaluation and Refinement Since, we are lacking any
type of ground truth about the actual location of markers,
the tracking accuracy is evaluated based on human assess-
ment. The predicted labels are plotted on top the original
video, such that a video frame looks similar to the depic-
tion in Figure 2 (Note: The label names are not displayed
in the video, solely the colored dots). From our manual
assessment, it was observed that the prediction were satis-
factory for the general movement of the mouse in the cage
but impermissible for grooming phases. The reason for this
is again the grooming ratio being much smaller than other
movements.

Accordingly, for better predictions during grooming, we
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Figure 3: DeepLabCut training loss curve (Note: The loss for initial iter-
ations (Loss at iteration 0: 0.3) have been cropped out to better illustrate
the relevant details)

extracted 80 more frames from grooming periods, labelled
them and added it to the previous dataset (in total, 400 la-
belled frames). The model is trained again for 5000 itera-
tions, with initial weights taken from the previous training
session. The above process of evaluation is repeated until
satisfactory tracking is achieved during grooming.

4.2.4 Data

We have talked in lengths about the pipeline for data collec-
tion. Therefore, we will finally discuss the data we obtain
after the whole process. Apart from the (x, y) pixel coordi-
nates, there is also a third entity in DLC predictions, it’s the
likelihood of the marker being predicted correctly. Thus,
each marker holds the following information: [bodypart id
,frame id, x, y, likelihood]. Correspondingly, if a video has
N number of frames and we are tracking 8 bodyparts, then
we have (N × 3)× 8 unique marker points. An example of
such time series data is shown in Figure 4 for a video with
approx. 68000 frames. A better glimpse of the individual
trajectories from the same video is found in Figure 5.

Figure 4: Predicted (x,y) for all body parts. The color map on the right
hand side of this Figure shows which color represents which bodypart.

Trends in trajectories The generated trajectories when
analyzed, display some noticeable trends in mouse’s be-
haviour and given that most of our discussion has sur-
rounded grooming, its natural that the patterns we found

Figure 5: Predicted (x,y) for Tail Base/Top, Left Ear, and Right Ear

are primarily related to it. In addition, for this section, in
order to have a balanced representation of grooming versus
non-grooming, the ensuing figures are based on a video clip
which fulfils the said criteria.

Throughout the video data, it was noticeable that the
mouse almost always grooms in the same corner of the cage.
This attribute is evident when the mouse locations are plot-
ted simultaneously for all frames (Figure 6) and we observe
a concentration of red dots in one corner of the cage.

When the trajectories are plotted in 3D (Figure 7), we
can notice two distinct looking clusters of points. The
planar-like point clusters associate with the duration in
which the mouse is moving around the cage and as a re-
sult the points are spread all across the xy-plane. On the
other hand, there are also these distinct tube-like clusters
in-between the before-mentioned planner ones. These tube
like regions subscribe to the periods in which the mouse is
stationary (in particular, positioned at that cage corner men-
tioned in the previous paragraph). When the mouse is rela-
tively stationary, that’s when the grooming happens. How-
ever, one should be careful and take into account that not all
stationary behaviours are grooming. So, within these tube
clusters, there are points associated to grooming, but not all
of it is grooming.

For each of the two mentioned clusters, 1000 consecu-
tive frames (20 seconds long period) are extracted. These
specifically associate to grooming (Figure 8) and moving
around or non-grooming (Figure 9).

Figure 6: Plotted Centers over the entire duration of the video. The red
dots represent the location of mouse’s center of mass, calculated by taking
mean of the predicted body part positions for each frame. The background
image is a still from the video and has been added to provide some context
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Figure 7: Left Ear, Right Ear, and Nose trajectories plotted across the
whole video duration. The remaining body parts and some intermediate
points have been omitted to avoid crowding and to maintain a readable
plot

Figure 8: Grooming segment: The idea here it to show that the answer for
quantification of grooming may not lie in the analysis of the full trajectories
but within these short segments from this seemingly chaotic movements.
This segment covers 1000 consecutive frames, which is equal to 20 sec-
onds of video recording

4.3. Data Analysis using TDA

The field of topological data analysis (TDA) in recent
years has gained increasing attention. It has the ability
to discover geometrical invariants in high-dimensional, un-
structured and noisy data sets. Comparing to deep learning
models, the biggest advantage of TDA is associated with its
non-black-box property. The representations from features
are more explainable. Specifically, we applied the method
persistent homology with Vietoris-Rips filtration in TDA to
analyse grooming segments through their topological signa-
tures.

Point-cloud data are needed to apply methods from TDA.
In our method, the distance space (xi, d) is transformed into
simplicial complexes parameterised by t ∈ [0,∞) by ap-

Figure 9: Non-grooming segment, where the mouse is moving around the
cage. This segment is equal in length to the grooming segment from Figure
8, yet, here a clear trajectory of motion can be detected.

plying Vietoris-Rips filtration, V Rt(d). From this geomet-
rical representation of (xi, d) one can identify the number
of partitions, cycles etc. at different scales t, by applying
the homology functions Hn inferred from algebraic topol-
ogy. Homology Hn at an increasing level of filtration t can
be represented as bar codes {(ai < bi)|i = 1, ..., r}, char-
acterizing the birth and death time of topological features.
Finally, the topological signatures are computed by stable
ranks as follows:

r̂ank(t) = {number of bars s.t. bi − ai ≥ t} (1)

It can be proved that stable ranks are piece-wise constant
non-increasing functions, so their similarities between each
other can be assessed by interleaving distances:

d▷◁(f, g) = inf{v|f(x) ≥ g(x+v) and g(x) ≥ f(x+v) for any x}
(2)

The grooming trajectory is segmented by a sliding win-
dow of size 2 seconds (100 frames) with 1 second overlap.
For each grooming window, we formulated a point cloud of
16 points corresponding to x, y coordinates of the 8 body-
part markers, in 100 dimensional space. To capture the
movement representation in every grooming segment, we
consider correlation metric as pair-wise distance between
points in the point cloud,

d(x, y) = 1− xc · yc
∥xc∥∥yc∥

(3)

To enrich the effects of negative correlations, a modified
correlation metric is also experimented.

d(x, y) = 1 +
xc · yc

∥xc∥∥yc∥
(4)
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In our approach only homology H0 is considered since
many grooming segments do not have H1 or higher homolo-
gies. The assumption is that similar grooming patterns have
similar pair-wise correlations between body parts, thus re-
sulting in similar topologies. For example, the persistence
bar codes of two similar grooming segments and two rear-
ing segments are shown as follows.

Figure 10: Persistence bar codes for mouse behaviours

The resulting persistence bar codes reveal similarities
and dissimilarities for same behaviours and different be-
haviours respectively. This implies that analyzing their sta-
ble ranks encoding of these bar codes is a promising re-
search direction.

We studied the topological signatures by adapting a Sup-
port Vector Machine (SVM) classifier with homology stable
rank kernel, as well as K-nearest-neighbours taking inter-
leaving distances between stable ranks. The homology sta-
ble rank kernel function for SVM is introduced in a newly
published paper [1]:

Kd(X,Y ) =

∫ ∞

0

r̂ankd(X)r̂ankd(Y )dt (5)

Both raw trajectories and ARIMA filtered trajectories with
AR degree 1 and MA degree 2 are tested with the mod-
els. To take account of imbalanced classes, we used SVM
with class weighting and KNN with subsampling of equal
amount of non-grooming data as grooming.

4.4. LSTM-based approach

We decided to tackle the problem by exploiting a deep
learning technique, suitable for time-series. Long Short

Term Memory [7] networks have shown astonishing results
in several fields. Few works ([15], [11]), related to behavior
recognition, have made use of LSTM, proving its effective
capability to model such task.
Our approach consists in a many-to-many architecture.
Each input sequence represents a fixed number of frames.
A single frame represents a temporal input and it is repre-
sented by 24 numerical data, where each marker (8 in total)
is represented by a triplet: 2-dimensional coordinates (x, y)
and likelihood value. A single sequence can be intended
as the concatenation of such information from contiguous
frames. The objective of the network is to predict the be-
havior associated to each frame.
The architecture consists of several blocks, here reported:

1. a bidirectional LSTM encoder which takes a se-
quence of fixed length as input and gives a sequence
of hidden states as output;

2. an attention mechanism [3]: it takes the hidden states
from the encoder and gives a weighted sum of the hid-
den states as output: the so-called context vector;

3. a LSTM decoder: it takes the current context vector
as input and produce a hidden state as output;

4. a Fully Connected Neural Network: this takes each
distinct hidden state (from the decoder) and produces
a vector of length 2. Bear in mind that the latter vector
is computed for each hidden state, separately;

5. a Logarithmic Softmax block: this is the last block
and it is intended to produce the two logarithmic prob-
abilities for each frame in the input sequence.

The number of input frames inside the sequence is equal
to the number of logarithmic probability vectors (each of
length 2) produced by the network.
In figure 11 is reported the schema of our architecture.

Inside the figure is also reported a pre-process block:
this represents a relevant aspect of our development pro-
cess, since we tested several pre-processing techniques and
evaluated which one was the most effective for our task.
The evaluation results will be treated in Section 5. Here, we
introduce the different pre-processing strategies considered
for our task:

1. centering with respect to frame center: all the mark-
ers in a frame are centered around the center of that
frame. This means that the centering is done without
considering statistics from other frames. As one may
be think, this procedure may cause loosing of temporal
relationships, leading to worse results;

2. centering with respect to sequence center: in this
case, the markers are centered around the center of the
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Figure 11: Schematic representation of the LSTM-based architecture.
Each context vector ci produced by the attention mechanism is the
result of a weighted sum of the encoder hidden states. The weights
(α1, α2, ..., αsequenceLength) are automatically learnt by the network.
Furthermore, they depend by the encoder hidden states and the hidden state
generated by the decoder in the previous temporal instant. See [3, Figure
1] for a clear understanding

whole sequence. This procedure relies on sequence-
based statistics and it is then related to the length of
the sequence;

3. standard normalization: applied separately to each
distinct marker coordinate and likelihood, using the
training set statistics for each feature.

After this initial phase, we further investigated the im-
pact of the sequence length. We evaluated several sequence
lengths for this purpose.

The network has been trained with Adam optimizer,
with a learning rate of 10−4 and a weight decay of 10−4.
The latter, along with a dropout of 0.3, has been inserted in
order to prevent overfitting.
The loss function defined for our network is the negative
log likelihood, which takes as input the log probabilities
produced by the network and the ground truth label associ-
ated to each frame.

5. Experimental Evaluation
1 For all the experiments we made use of the same train-

evaluation-test split. In particular, we used recordings from
the same angle (right-side camera). We used 2 videos:

• one of length 1 hour, 6 minutes and 13 seconds

• and one another of length 22 minutes and 57 seconds.

In particular, these are our sets:

1. train set: trajectories extracted with DLC from the
first video, considering the first 46 minutes and 40 sec-
onds;

2. evaluation set: trajectories extracted with DLC from
the first video, considering the remaining 19 minutes
and 33 seconds;

3. test set: trajectories extracted with DLC from the sec-
ond video.

5.1. Result Analysis for TDA approach

It is found that for default correlation metric H0 with
single linkage has highest classification performance, and
for modified correlation metric H0 with complete linkage
has highest classification performance. This is because both
of these settings use significantly the large amount of pos-
itive pair-wise correlations between body parts for running
and rearing behaviours. Since the pair-wise distances for
points in the point cloud depends on pair-wise correlations
directly, it results in features for running and rearing seg-
ments merge quickly in filtration process of default correla-
tion metric setting, and vise versa for modified correlation
metric setting. This makes the topological signatures more
distinct between bahaviours containing rearing and running
and behaviours not containing them.

(a) H0 with default correlation metric, sin-
gle linkage

(b) H0 with modified correlation metric,
complete linkage

Figure 12: H0 Stable Ranks of training data with ARIMA filtering

The above figures show clearly the concentration areas
of grooming and non-grooming stable ranks, as a result of

1https://github.com/vittoriop17/mouse_behavior
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non-grooming behaviours contain lots of rearing and run-
ning. The topological differences for different behaviour
categories induced by negative pair-wise correlations are
not visually distinguishable.

In the table below, ’f1(G)’ and ’f1(NG)’ denote the
f1 score for grooming and non-grooming respectively.
’weighted avg’ denotes the weighted accuracy. After some
experiments it is found that there is no significant differ-
ences on the number of neighbours chosen in k-NN algo-
rithm, whereas k=9 neighbours has slightly better perfor-
mance overall.

Table 1: H0 with default correlation metric, unfiltered trajectory

SVM 9-NN
Train Validation Train Validation

f1(G) 0.59 0.47 0.83 0.47
f1(NG) 0.84 0.78 0.81 0.79
weighted avg 0.78 0.71 0.82 0.72

Table 2: H0 with default correlation metric, filtered trajectory

SVM 9-NN
Train Validation Train Validation

f1(G) 0.57 0.49 0.83 0.50
f1(NG) 0.83 0.79 0.83 0.79
weighted avg 0.77 0.72 0.83 0.73

Table 3: H0 with modified correlation metric, filtered trajectory

SVM 9-NN
Train Validation Train Validation

f1(G) 0.45 0.47 0.79 0.46
f1(NG) 0.75 0.72 0.78 0.76
weighted avg 0.69 0.67 0.78 0.69

The classification did not significantly improve before
and after ARIMA filtering. Slight improvements on gener-
alization of grooming have been observed. Best model is
9-NN applied on ARIMA filtered trajectories, with default
correlation metric. We applied this model to the test data,
and the f1 score for grooming reached a similar score as
validation data. Both of them are around 50%.

Table 4: H0 with default correlation metric, filtered trajectory

9-NN
Test

f1(G) 0.48
f1(NG) 0.90
weighted avg 0.86

There is only a small portion of grooming signatures
which is linearly sparable in the homology stable rank ker-
nel transformed space. The large improvement in f1 score

of grooming in training data with kNN is due to that only a
subsample of non-grooming data is considered, which low-
ers down the number of false positives significantly hence
increases precision a lot. Classification using kNN achieved
better performance, revealing that similar movements from
grooming and non-grooming form clusters.

A drawback of this method is that pair-wise correla-
tions are variant to rotations, so it leads same grooming
behaviours facing different directions have quite different
pair-wise correlations between some points. Further re-
search should look into this issue.

5.2. Result Analysis for LSTM approach

First of all, we evaluated the best pre-processing tech-
nique, using the test-evaluation split. All the hyperparam-
eters have been kept fixed for all the 3 executions. In par-
ticular, we kept a sequence length of 200 frames (having 50
fps, this means that a single sequence represents an excerpt
of 2 seconds).

Figure 13: The plot shows the evolution of the evaluation scores during
training, epoch by epoch. The trained model is evaluated in terms of f1
score.

Looking the plot 13, it is evident that the centering with
respect to the sequence center gave the best results. After
that, we moved our attention to the tuning of the sequence
length: this hyper-parameter has an obvious impact to the
training, since it affects the centering technique.
The evaluation results for the sequence length are reported
in figures 14 and 15. The latter reports the results from the
50th to the 100th epoch. From the second figure it is pos-
sible to spot the differences between the different sequence
lengths. The best value is 200 (5 seconds sequences). It
is a reasonable result: a sequence length too short (like 50)
may lead to loose relevant temporal information. Instead a
sequence length too large may cause the inclusion of noisy
information.

Once defined all the value of interest, we tested our
model. This phase has been done in the following way and
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Figure 14: Evaluation scores in terms of F1 score. Each line is associated
to a distinct sequence length.

Figure 15: Evaluation scores in terms of F1 score. Each line is associated
to a distinct sequence length. Only the scores from the 50th to the 100th
epoch are reported, in order to simplify the visualization

with the following setting:

• we used the recentering with respect to the sequence
and a sequence length of 200;

• then, we trained the network using both: training
and evaluation sets. We trained the network for 100
epochs;

• we picked the model that reached the best (highest)
grooming F1 score for the set used during training;

• eventually, we tested the best model, using the unseen
test set.

The results are reported in figure 16. The results are also
reported in terms of F1 scores for each distinct set: these
can be found in table 5

Figure 16: The figure shows the confusion matrix obtained with the the
test set. The confusion matrix is reported in relative terms, due to the high
imbalance between the two classes

Table 5: Results obtained with the best LSTM model, for each distinct set
LSTM

Train Validation Test
f1(G) 0.9 0.87 0.75
f1(NG) 0.97 0.96 0.97
weighted avg 0.95 0.93 0.94

6. Summary and Discussion
Followed by behaviour trajectories extraction from

DeepLabCut, we implemented two approaches for trajec-
tories modelling. The approach with LSTM achieved bet-
ter prediction accuracy for grooming vs non-grooming be-
haviours, benefiting from the high approximation strength
of deep learning models. However, the approach with per-
sistent homology in TDA has the advantage of being more
explainable and non-blackbox-ish. It produces more direct
representations of behaviours following solid mathematical
proofs.
In order to easily assess the comparison between the afore-
mentioned techniques, the results for the test set have been
reported in table 6.

Table 6: Test results obtained with TDA-based and LSTM-based ap-
proaches

9-NN LSTM
Test

f1(G) 0.48 0.75
f1(NG) 0.90 0.97
weighted avg 0.86 0.94

6.1. Lessons learned

A very important step in the project was the collec-
tion of high-quality mice videos to which we could apply
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DeepLabCut and obtain accurate trajectories representing
the movements of the mice body parts. This also became a
drawback, since the videos we first obtained to work with
was of lower quality and we iteratively had to reach out to
Fisone-lab at KI in order to adjust the videos to increase
their quality. The final videos we worked with were videos
we ourselves recorded at site. This resulted in a delay of
modeling part of the project, and a lesson learned for fur-
ther projects is to focus on getting high-quality data fast in
the beginning on the project since this will determine how
fast you will be able to start modeling the data and also de-
termine the quality of your final models.

6.2. Future Work

In the future, it would be good to test different exper-
imental settings for video data collection, such as using a
different mouse, combining videos from different angles to
obtain a 3D trajectory etc. We were limited by 50fps, which
has motion blur problems. Therefore a higher frame rate
can be tested in the future.

The future work with the approach of TDA involves de-
signing a new coordinate system for mouse which captures
angle invariance and reflexivity. The designation of this new
coordinate system should aim at ensuring the pair-wise cor-
relations between body parts are the same irrespective to
which direction the mouse is facing when performing a mo-
tion.

The future work with the approach of LSTM involves
testing the generalization ability on more data. Further-
more, assessing the representations obtained by the LSTM
model is also valuable for neural science research.

An aspect that could be further investigated regards the
evaluation of each model using a subset of the body parts.
In both our experiments (TDA and LSTM) we considered
all the body parts for the training of the models (for the
LSTM case, we also made use of likelihood features). It
may be interesting to evaluate if the models reach compara-
ble prediction results considering a reduced number of input
features (e.g. only considering paws, ears and nose, maybe)

7. Ethical considerations

When working with mice or other animals there are eth-
ical aspects to consider [9]. In the case of mice their living
standards are of importance, which covers things like cage
size and breeding. Animal research in Sweden is strictly
regulated under both Swedish and EU legislation. In order
to carry out animal experiments a licence has to be applied
for which undertakes the ethical review of the experiment.
All our experiments were carried out under the supervision
of the Fisone Laboratory at KI. We provided the guidelines
of the experiments, but the handling of the mice was done
by Fisone Lab researchers.

8. Opposing groups
The opponent groups for our project are groups 8 and

17. Group 17 has the project of imaging colorization. The
main challenge they faced was the evaluation metric of the
colored images, since same object in the world typically has
multiple realistic colors. They decided to tackle this by as-
sessing the robustness of models. Group 8 has the project of
medical images classification for detection of skin lesions.
They firstly wasted some time on finding a good GPU, later
on had difficulty of achieving a desired accuracy with mul-
tiple instance learning approach they experimented. In our
case, we had difficulty of poor quality video at the begin-
ning, which is eliminated by recording new videos on KI
site with desired conditions by ourselves. We also had the
difficulty in generalizing LSTM to unseen data. The algo-
rithm started to generalize better after we decided to nor-
malize the mouse to the center of each sequence rather than
center of each frame.
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A. Implementation details
Here follows more specifications in order to easily repro-

duce our experiments

A.1. TDA

The main details are described in the section 4.3. Here is
a summary of parameters for the best model.

Table 7: Hyperparameter setting for the TDA-based approach
Hyperparameter Value
Sliding Window Size 100
Overlapping Size 50
Distance Metric Correlation Metric
Linkage Single Linkage
Homological Dimension 0
Nearest Neighbour Number 9

A.2. LSTM

The main details of the network are reported in the sec-
tion 4.4. In particular, the architecture is clearly described in
figure 11. Nevertheless, some secondary details were omit-
ted. For the sake of completeness, in table 8 is reported the
list of all the the hyperparameters of our network.

Table 8: Hyperparameter setting for the LSTM-based approach
Hyperparameter Value
Hidden size 150
Batch size 64
Dropout 0.3
Sequence length 200
Stride 0.75

The stride is reported in relative terms and it represents a
parameter used for the construction of the input sequences:
for example two consecutive sequences share a portion of
25% of information, since the stride is equal to 75%. We did
not tune all the aforementioned hyperparameters for lack of
time. It may be interesting to fine tune them, for example
exploiting a random search approach.
Another important aspect that has not been mentioned in the
LSTM section regards the dense network used for the pre-
diction of the behavior classes (the one that takes in input
the hidden state produced by each LSTM cell of the de-
coder). The configuration of such network is quite simple,
indeed it contains only a hidden layer with 50 neurons.
Another detail that could be further investigated regards the
omission of the likelihood features for the training of the
model. Furthermore, it may be interesting to evaluate the
effectiveness of different combination of markers: in our ar-
chitecture we made use of all the 8 markers. Nevertheless, it
would be interesting to see if the same results (or even bet-
ter results) may be reached with few of these markers (for
example only ears, nose and paws).
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