Object detection with YOLOvV3

Lucas Lovén Samuel Wintzell Devrat Singh Gustav Lenart
lucassl@kth.se wintz@kth.se devrat@kth.se glenart@kth.se

Department of Electrical Engineering and Computer Science
KTH Royal Institute of Technology
Stockholm, 114 28

Abstract

Multiple applications of deep neural networks (NN) exist within industry and
research. One area that has found extensive implementation is object detection
- an extension of image classification. Here the prediction of the model is class
label and bounding box. Implementations include robotics, autonomous vehicles
and radiology. It is essential that the model predicts with accuracy and speed
specifically within the two firstly mentioned domains. The YOLO architecture is a
deep NN that emphasizes inference speed over accuracy, and regarding real-time
object detection current versions of YOLO achieves higher mean average precision
(mAP) compared to its contemporaries. Initial version of YOLO were known for
not being able to detect small objects relative to the image size. In YOLOv3 the
architecture was upgraded in order to rectify this. In this project we implement
YOLOV3 using PyTorch and investigate the trained models ability to detect details
based on the characteristics of training data. Our results show that indeed bigger
objects are easier to detect due to salient features. Training on a data set with more
contextual information results in a model that can generalize better as well.

1 Introduction

The goal of the group members was to get an understanding, beyond the mathematical syntax, of
neural networks (NN) conventional applications in industry and research. Object detection was
decided when discussing what area to specify the problem in. Object detection is an extension of the
image classification problem in such a way that the trained models goal, in addition to predicting
class, is to predict a bounding box for the respective objects. The group members sought practical
training on implementing a NN with established python packages. One popular model within object
detection that prioritize inference speed is the YOLO architecture [[17].

In section[I| we formulate our problem, why it is important and related work. In section [3] we present
and discuss the data that was used when training and validating our models. The intrinsic structure
and syntax of YOLOV3 is described in section[d} Finally in section [5|and[6| we detail the experiments
that were performed and discuss conclusions.

1.1 Problem

The problem that the project aims to investigate is object detection. Specifically the YOLOv3 architec-
ture performance on object detection. Here we formulate some key points related to implementation,
training and testing:

* Implement the YOLOV3 model from "scratch" using PyTorch. This was done by following
a tutorial by Alladin Persson [15]

* Investigate YOLOv3 performance on two different datasets of varying difficulty.

* What performance is achievable by training networks on a subset of classes and images.
* Investigate YOLOv3 performance on detecting small versus large objects.

1.2 Why is this important?

Object detection has found its way into several industrial domains. Examples include analysis of
medical imagery or decision making by autonomous vehicles. Regarding the former, the limitations
created by radiologist put under stress can be reduced by the help of a trained NN model detecting
and segmenting the essential parts of the imagery that is required.

The automotive industry is moving towards implementing systems fully utilizing autonomous driving
and decision making. While fully autonomous vehicles are not on the market, semi-autonomous
are. Such vehicles are defined by having the human driver act as fallback performance of the driving
task [12]. The decision making of autonomous vehicles relies heavily on the vehicle "knowing" it’s
surroundings and an important technical application is object detection. Moreover the camera input
processing and decision making needs to be in real time. Thus the module that handles the object
detection needs to be as fast and accurate as possible. As already mentioned, the Yolo architecture
including and succeeding version 3 is a NN architecture that emphasizes speed [[17]. In conclusion
the work of this project is important because it aims to give insight in the inner workings of a fast NN
model, and its potential limitations.

2 Related work

One way to compare and discuss performance of a trained NN model is to use established benchmarks
in the form of mean average precision (mAP) or intersection over union (IOU). Moreover training
and validation data are transparent. With this method of comparison there is a potential that causes of
limitations for each model are veiled by the distinguishing numbers (mAP etc.). Excluding network
architecture the source can be tracked to the data, for this case images. Reasons include occlusion,
viewpoint and relative size of object within image. This project will focus on the latter.

Limitations due to data set characteristics are discussed in [5]. Specifically the authors analyze the
effect that characteristics such as occlusion, aspect ratio and object size has on the models predicting
ability. In conclusion false positives and localization errors are very dependent on such characteristics.
The authors also recommend further research be put in analyzing the detection of small versus large
objects, partly due to the difference in salient features in the image. In [4] further research is done on
the detection of small objects. A data-set consisting of small objects (relative to image) was created
and an extension of the R-CNN framework was created. Moreover the bias of the PASCAL VOC
data-set is discussed - how the samples may be synthetic in the sense that viewpoints, occlusion and
similar classes in the same image are not frequent. This may bias the model and result in performance
limitations when implemented on a machine. This is briefly elaborated on in section [6]

3 Data

The two datasets used for object detection in this project are The Pascal Visual Object Classes
(VOC) Challenge [9] and Microsoft COCO: Common Objects in Context [[18]. The COCO dataset is
downloaded from [[14] and consists of 120k images including 80 classes. VOC dataset consists of
40k images including 20 classes, downloaded from [[1].

Data in COCO and VOC have different characteristics. Distinguishing attributes are size and number
of classes, but also in the amount of objects per image, relative size and location of objects in image
[L8]. The effect of these attributes on network performance and learning is investigated in this project.
As the amount of time and resources are limited, we have restricted ourselves to subsets of the full
datasets.

3.1 Preprocessing

Before training, input data is preprocessed to improve generalization of trained networks. To begin
with, all images are resized to 416x416 with padding if needed. Additional preprocessing done on
the training data with some randomness include: Rotating input image, added gaussian noise to input
image, horizontal flip, convert image to grayscale and blur input image.

3.2 Filtering

To be able to train and compare performance between networks trained on different datasets they had
to be filtered in several ways. These include

* Reducing the number of samples such that the training time is reasonable while mitigating
under-fitting.

* Balancing the data-set, i.e reducing over-representation of classes in the training data.
 Create subsets categorized according to relative size of object in the image.

— Specific for ex. 2&3: Not VOC, but only objects and labels that can also be found in
VOC. Only contain either big or small objects.

In the end there was 3 different datasets for experiment 1, where the first of these three was based on
VOC, and the latter two on COCO. Then there was 3 for experiment 2, and 6 for experiment 3, all
based on COCO.

4 Method

4.1 Whatis YOLO?

Convolutional Neural Networks (CNNs) are the norm for classification and localization problems in
computer vision. YOLO (You Only Look Once) is a CNN based method but what makes it stand out
from its contemporaries such as R-CNN is its speed of making predictions and the accompanying
accuracy. This being a key reason for its popularity in real time applications. Generally, CNN based
methods requires input images to be processed multiple times with focus shifting from one region to
another within the image. On the other hand, YOLO makes the predictions by simply passing the
image once through its FCNN (Fully Convectional Neural Network) and the result is in the form of a
bounding box around the detected class. Now, since YOLO considers the whole image while making
the classifications, it keeps the global context of the image into account, which could be lost when
detections are made by concentrating on one section of the image at a time [17].

4.2 YOLO Architecture

A significant change from its predecessors is that YOLOv3 employs Darknet-53 CNN. The network is
built such that it consists of 53 layers made up of repeating consecutive 3 X 3 and 1 x 1 convolutions
layers, along with skip connections and up-sampling. This is shown in Figure[I]in Appendix [A.T]

The task for YOLO architecture is two fold, Feature extraction and Feature detection. To accomplish
this, it calls for stacking of the previously mentioned 53 layers for extraction, with another 53 layers
for detection. As a result, the final architecture consists of 106 layers. One of the reasons for
having this many layers is in response to the problems associated with previous versions of YOLO in
detecting and classifying small objects [7].

The full architecture of YOLOV3 is graphically described by the Figure in[A.2] However, due to the
limit on the number of pages it is not possible to delve into each and every layer of this structure.

4.2.1 Multi-Scale Detections

To make better predictions about a variety of object sizes in the image, the YOLOv3 model adopts a
multi-scale detection scheme. This means that out of all layers, the detections are made three times at
layer 82, 94 and 106 at different scales. However since the detections are considered for multiple
scales the features should also be extracted at varying scales. To clarify, the goal of a feature extractor
is to perform convolutions with a kernel in order to produce a feature map. These feature maps are
generally a more concentrated representation of the input image. For example the extracted features
could be curves or edges in the image.

Consider the network shown in Figure[T]in[A.T] with an example input image of size 416 x 416. Here
feature extraction and detection are made at different scales. From the Figure, the 52 x 52 feature
vector will be in relation to small objects, 26 x 26 for medium size objects and finally, the most broad
feature map 13 x 13 for large objects. How these different feature map sizes help in detecting objects

of different sizes should be apparent. A higher resolution allows to capture finer details in the image
and the reverse is applicable to a coarse grid size.

4.2.2 Predictions

With object detection, we are looking for outputs that contain the location of the object in the image
and its class label. Therefore the predictions are in the form of bounding boxes represented by the
entities in (I). Here (¢,,1,) are not explicit locations of the detected items, rather these are values
relative to the top left corner of the image (¢, ¢,). Similarly, the output (t,,, ¢) are not the exact
width and height of the bounding box. Instead these dimensions need to be transformed by applying
a log space transform and multiplied by the dimensions of a anchor box. Before we discuss what
an anchor box is, it is convenient to show how we get the final bounding boxes of interest. The
transformations are shown in (2). Here o stands for the Sigmoid function, to map the values between
0 and 1 and p,, and p;, are dimensions of the anchor box.

by = o(ty) + ¢
by = (ty) + ¢y

bb = [(tzvtyﬂtw’th)a (Po)s (Peys Pesy)] (1) bu 2

tw

= Pw€
th
bn, = pre"

Previously, it was mentioned that the feature maps at different scales were used to make predictions.
How these translate to predictions is facilitated by the fact that, in YOLO the size of the prediction
maps is the same as the before-mentioned feature maps. Therefore, one can imagine the prediction
maps as a grid dividing the image into equal parts and the size of the grid varies. Consequently
each grid cell is then responsible for providing three bounding boxes (predictions) with the attributes
shown in (). Accordingly, the total number of predictions after taking each scale into account is:
(52 x 52426 x 264 13 x 13) x 3 = 10647. As you can imagine, these are way too many predictions
and therefore we need to use methods to filter the results to finally get the best classification and
localization.

4.2.3 Anchor Boxes

The anchor boxes (also known as prior boxes) are utilized such that they have predefined dimensions
even before training. The anchor boxes are usually made to suit the ground truth. In YOLOv3, each
grid cell has 3 anchor boxes (equal to number of bounding boxes predicted per cell). It might seem
counter intuitive to have our predictions relative to these predefined boxes, but direct prediction of
bounding box dimensions leads to unstable gradients during training [[7]].

4.2.4 Filtering Predictions

When listing the attributes of a bounding box in (I), the entities p, and (pe,, pe,, ...) Were left
un-mentioned. These represent the objectness score and individual class probabilities respectively.
According to [[16] and [17], p, is essentially the confidence we have if a bounding box contains an
object and (pe, , Pe,, ---) Tepresents the probabilities for certain classes being present in the bounding
box.

The filtering is now explained in steps.
1. Out of the three bounding boxes predicted per cell, we select the ones which has highest

IOUgr”et(}j1 (overlap between ground truth and prediction).

2. Calculate the objectness score with Pr(Object) x TOUSRE.

* With this, now we know how sure a box is about an object being inside it. Therefore, we
can remove those boxes which are less confident. Subsequently, although reduced, we will
still end up with multiple overlapping bounding boxes in the object region.

3. Non-maximum suppression is performed based on IOU to pick the best prediction.

The Figure in[A.3] visually demonstrates the above filtering steps.

5 Experiments

The YOLOV3 network architecture is implemented in PyTorch [15]. To confirm the implementation,
we overfitted the network on a few samples from the VOC dataset. After a successful implementation
different experiments were conducted to investigate YOLOv3 performance and points listed in section
1.1.

5.1 YOLOv3’s measures of precision

In this section we use 4 different measures of precision: mean average precision (mAP), object
accuracy, class accuracy and no object accuracy. An intuitive understanding of these is presented
below where every measure can take a value between 0-1:

* mAP: Is 1 if the predicted bounding box’s location, width and height is exactly according to
the label. In the report mAP refer to mAP5o, where 50 denotes the IOU threshold 50%.

* Object accuracy: Is 1 if the network identifies every labelled object in the picture.

* Class accuracy: Is 1 if every object that is detected is predicted to be of the correct class.

* No object accuracy: Is 1 if the network never predicts an object where there is none.

5.2 Experiment 1: YOLOV3 trained and tested on different datasets

To investigate performance of YOLOvV3 we trained three networks, referred to as COCO-1, COCO-2
and VOC-1. The networks were trained to detect two types of objects: people and cars. Table [I]
shows information about the subsets that each network was trained on.

Table 1: Information about the dataset for each trained network

Network VOC-1 COCO-1 COCO-2
Set 1 2 3
Dataset voC COCO COCO
Num images 4302 4500 1200

Num objects: people 5764 23970 6515
Num objects: cars 4468 16461 4408

From now on, set 1 and 2 in table]is referred to as filtered VOC and filtered COCO respectively.

COCO-1 was trained for 710 epochs, corresponding to 100 hours. VOC-1 was trained for 400
epochs, 40 hours and COCO-2 was trained for 535 epochs, 20 hours. All three networks reached
their individual peak in performance after 200-300 epochs of training, further training didn’t yield
any increase in performance.

5.2.1 Results

Appendix [B.1] shows performance on filtered COCO by our trained networks. It also displays
benchmark performances on the COCO dataset by pre-trained YOLOV3 networks and other popular
object detection models. Appendix is similar but with performances on filtered VOC and full
VOC dataset.

Best performance on filtered VOC is achieved by VOC-1 with mAP = 0.609. Just ahead of COCO-1
with mAP = 0.591. The benchmark performance on the VOC dataset used is mAP = 0.782, achieved
by the pre-trained network VOC-78 in appendix [B.2] Appendix [C.2]shows an example of VOC-1
detecting people and cars in images from VOC dataset.

Best performance on filtered COCO dataset was COCO-1 with mAP = 0.383. Where a benchmark
performance on the COCO dataset is mAP = 0.553 by YOLOv3-416 [2]]. Appendix [C|shows COCO-1
detecting people and cars in COCO images.

5.3 Experiment 2: YOLOV3 ability to detect smaller sized objects

In section 3 in [[17] it is mentioned that YOLOv3’s performance on detecting smaller sized objects
has gotten better in comparison to it’s predecessors, but it is also mentioned that further investigation

of this is needed as no quantitative data regarding this is presented. This experiment is a consequence
of that. It was decided that the best representation of YOLOv3 would be a pre-trained network, and
not a locally trained one. This was to make sure that the local implementation and training was
not limiting the results that was going to represent YOLOV3 overall. With VOC-78 and this data a
fair representation on YOLOV3’s ability to detect smaller sized objects would be achieved. When
these datasets were classified with the VOC-78 net it would hence give fair measures on how well it
performed on the different sized objects. The results are shown in appendix [E]and is summarized in
following section.

5.3.1 Results

The networks’ ability to detect smaller objects is shown via the "object accuracy" measure, and from
the results of the experiments one can deduce that the object accuracy goes up as object size goes up
and that VOC-78 does not classify smaller objects as good as it classifies big ones. So does every
other measure besides "No object accuracy" that remains close to 1 on all datasets.

5.4 Experiment 3: COCO-1 and VOC-1’s ability to detect smaller sized objects

In experiment 3 we analyze and verify that the locally trained models COCO-1 and VOC-1 show a
similar behaviour as the VOC-78 model. This also further expands on evaluating YOLOV3 ability
to detect smaller sized objects. The same philosophy as in experiment 2 lies behind why the data
separation is fair in this also, with the only difference that one of these networks had been trained on
COCO data. This is taken into account when analysing the results. Measures from VOC-78 are added
as a reference. The key results are shown in appendix [E.2] and is summarized in following section.

5.4.1 Results

VOC-1’s ability to detect smaller sized objects follows the same trend as VOC-78, that the object
accuracy goes up as object size goes up and it does not classify smaller objects as good as it classifies
big ones. When it comes to COCO-1, the performance drops as the object sizes go up.

6 Conclusions

Object detection is a fundamental problem in computer vision. A problem where the size of objects
acts as a performance bottleneck [8], a notion that is strengthened by the results in section 5.

From appendix [B.2] and appendix [C.2] we can see that the YOLOV3 network VOC-1 achieves
satisfactory performance on VOC images after having trained for only 20 hours. However, looking
at object detection and it’s applications in industry and real world, the COCO dataset acts as a
better representative of real world applications out of the two. Quantitative comparisons between
the two datasets is depicted in appendix [D]and[D.2] A fundamental problem in object detection is
detecting smaller objects, since smaller objects are highly dependent on contextual information [18]].
Something COCO aims at rectifying by a collection of images with objects in their natural context,
rich in contextual information. E.g when the object to detect is sunglasses. The contextual information
"on a person" may be important for the model to accurately classify sunglasses. This is made even
more difficult with multiple small objects in each scene, where the network may find it hard find a
balance between capturing semantically strong features and retaining contextual information [§]].

In the end, COCO-1 was overall the best model. In experiment 1 it performs just as well as VOC-1
on VOC images, whilst being far superior on COCO images. Likely because it has been trained
on a richer COCO dataset, as seen in appendix [D.2] VOC-1 has probably captured the features of
people and cars well judging by it’s results on filtered VOC, but misses much of the spatial and
contextual information required to accurately classify COCO images. In experiment 3, appendix [E.2]
COCO-1 performance drops when tested on datasets only containing big objects. Just like the author
mentions at the end of section 3 in the YOLOV3 paper [[17]. This is assumed to be a consequence
of the data COCO-1 was trained on, which consist mostly of small objects. Further results from
experiment 2 and 3 solidifies that in general, YOLOv3 does perform better on big objects. But also
that performance on small objects can be improved with appropriate training data.

Overall, our YOLOV3 network COCO-1 manages to classify people and cars in everyday situations at
a pretty good level. But as expected, it’s still a fair bit behind the top performing YOLOv3 networks
out there due to less training data and restricted resources.

References

[1] https://www.kaggle.com/aladdinpersson/pascal-voc-dataset-used-in-yolov3-video.
[2] Yolo: Real-time object detection, https://pjreddie.com/darknet/yolo/.

[3] Yolov3 in pytorch, https://github.com/aladdinpersson/machine-learning-
collection/tree/master/ml/pytorch/object_detection/yolov3.

[4] Chenyi Chen, Ming-Yu Liu, Oncel Tuzel, and Jianxiong Xiao. R-cnn for small object detection.
In Shang-Hong Lai, Vincent Lepetit, Ko Nishino, and Yoichi Sato, editors, Computer Vision —
ACCV 2016, pages 214-230, Cham, 2017. Springer International Publishing.

[5] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun Dai. Diagnosing error in object
detectors. In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia
Schmid, editors, Computer Vision — ECCV 2012, pages 340-353, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[6] Ali Farhadi Joseph Redmon. Yolo9000: Better, faster, stronger. 2016.

[7] Ayoosh Kathuria. How to implement a yolo (v3) object detector from scratch in pytorch,
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/.

[8] Lin Ma Kai Mu Yonghong Tian Kui Fu, Jia Li. Intrinsic relationship reasoning for small object
detection. 2020.

[9] C. K. I. Williams .J Winn A.Zisserman M. Everingham, S. M. Ali Eslami - L. Van Gool. The
pascal visual object classes challenge: A retrospective. 2014.

[10] Manogna Mantripragada. Digging deep into yolo v3 - a hands-on guide part 1,
https://towardsdatascience.com/digging-deep-into-yolo-v3-a-hands-on-guide-part-1-
78681f2c7e29.

[11] Qi-Chao Mao, Hong-Mei Sun, Yan-Bo Liu, and Rui-Sheng Jia. Mini-yolov3: Real-time object
detector for embedded applications. IEEE Access, 7:133529-133538, 2019.

[12] Society of Automotive Engineers (SAE). Taxonomy and definitions for terms related to driving
automation systems for on-road motor vehicles. 2021.

[13] Rosina De Palma. Yolov3 architecture: Best model in object detection,
https://bestinau.com.au/yolov3-architecture-best-model-in-object-detection/.

[14] Aladdin Persson. https://www.kaggle.com/dataset/79abcc2659dc745fddfbal864438atb2fac3fabaa5f37daa8a51e36466db10
[15] Alladin Persson. Yolov3 from scratch.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection, 2016.

[17] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR, abs/1804.02767,
2018.

[18] S. Belongie L. Bourdev R. Girshick J. Hays P. Perona D. Ramanan C. L. Zitnick P. Dollar
T-Y. Lin, M. Maire. Microsoft coco: Common objects in context. 2015.

Appendices

A

A.1 YOLOV3 Architecture

Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x128
Convolutional 32 1x1

1x/ Convolutional 64 3x3

Residual 128 x 128

Convolutional 128 3x3/2 64 x64

Convolutional 64 1x1

Convolutional 128 3x3

Residual 64 x 64

Convolutional 256 3x3/2 32x32

Convolutional 128 1x 1
8x Convolutional 256 3x 3 —————] reatrovecursose |
Residual 32 x32

2

X

Darknet-53 ~ —

Convolutional 512 3x3/2 16x16

Convolutional 256 1x1

8x| Convolutional 512 3x3 —
Residual 16 x 16
Convolutional 1024 3x3/2 8x8

Convolutional 512 1x1

4x| Convolutional 1024 3 x3 _— Feature Vector 13x13
Residual 8x8

Extracted Features serving
as an input to the detector

X

Figure 1: Darknet-53 (taken from [10], [17])

A.2 YOLOV3 Architecture

o e e e T e e e S e e e S S i 7
} i
} Convolutional 1x1 Up Sampling Convolutional Set Conv2d 1x1 Concatenate Residual ! | | convolutional 1x1
1
I
| q

} i | | Convolutional 33 o
‘ E

i cedict fw odi | 8
} ‘ Predict one J | Predict two ‘ [Predict three ‘ i | ['convelutional 1%1 £
| x1 T T 1 1 2
: E
| ! | | Convolutional 333 @
1 <2 : i
I Convolutional 1x1
! x8 |
! i
‘ |
I =8
! x4 1 r
I Convolutional 1x1| &
| e | = B | e | — | 2
I l g
I | A T | | | Convolutional 3x3 | =
I
I |

Figure 2: YOLOv3 Full Architecture (taken from [11]])

A.3 Filtering Predictions

EJIE e

Figure 3: Filtering Bounding Box Predictions (adopted from [13])).The first image from the left,
depicts the numerous bounding box predictions, the second image is a result of removing the boxes
which do not contain an object, and finally, the third image is a result of non-maximum suppression
on second image.

B Experiment 1: Performance on COCO and VOC datasets

B.1

Table 2: Performance on COCO dataset [2]
Filtered COCO dataset

Model mAPsy objacc classacc no obj acc

COCO-1 @290epochs 0.383 0.483 0.895 0.993
COCO-1 @710epochs 0.372 0432 0.888 0.996
VOC-1 @400epochs 0.244 0332 0.799 0.996
VOC-1 @200epochs 0.238 0.318 0.801 0.995
COCO-2 @535epochs 0.232 0259 0.827 0.998
COCO-2 @235epochs 0.226 0.289 0.837 0.997

COCO dataset
Model mAPsy objacc classacc no obj acc
YOLOvV3-320 0.515 - - -
YOLOV3-416 0.553 - - -
YOLOVv3-608 0.579 - - -
YOLOV2 608x608 0.481 - - -
Retinanet-101-800 0.575 - - -
Faster R-CNN+++ 0.557 - - -

B.2

Table 3: Performance on Pascal VOC dataset [6] [3]]
Filtered VOC dataset

Model mAPsy objacc classacc no obj acc

VOC-1 @200epochs 0.609 0.601 0.970 0.995
VOC-1 @400epochs 0.592 0.559 0.976 0.997
COCO-1 @290epochs 0.591 0.589 0.947 0.994
COCO-1 @710epochs 0.579 0.468 0.948 0.998
COCO-2 @535epochs 0.360 0.302 0.902 0.998
COCO-2 @235epochs 0.323 0.303 0.910 0.998

VOC dataset

Model mAPsy objacc classacc no obj acc
VOC-78 0.781 - - -
YOLOV2 544 0.738 - - -
Fast R-CNN 0.684 - - -
ResNet 0.738 - - -
Faster R-CNN 0.704 - - -
SSD512 0.749 - - -

C Trained network images

C.1 VOC-1

50
100
150
200
250

300

350

0 100 200 300 400 0 100 200 300 400

Figure 4: VOC-1 detecting people and cars in VOC images.

C2 COCO-1

50

100

150

200

D.2

o — person

person Persom:rson

100 200 300 400 0 100 200 300 400

Figure 5: COCO-1 detecting people and cars in COCO images.

Quantitative analysis of COCO and VOC

Heatmap showing the distribution of the object center points (x, y) in both datasets

COCO PASCAL_VOC

Number of objects in pixel

Figure 6: Distribution of object center points in filtered datasets.

Number of objects in pixel

Percent of objects

E1l

E.2

Relative size of objects compared to the entire image for each dataset

COCO

PASCAL_VOC

0% 10% 20% 30%

40% 50%

60% 70% 80% 90%
Percent of image size

Percent of objects

100%

10%

0% 10% 20% 30%

40% 50% 60% 70% 80% 90% 100%
Percent of image size

Figure 7: Relative size of objects compared to entire image for each filtered dataset.

Experiment 2 and 3: Results

Table 4: Result from experiment 2

Dataset \ Class accuracy ~ No object accuracy Object accuracy mAPsg

smalll
small6
big50

0,848
0,857
0,909

0,998
0,997
0,997

0,453
0,562
0,858

0,332
0,474
0,728

Table 5:

Result from experiment 3

VOC-1

Dataset \ Class accuracy No object accuracy Object accuracy mAPsq
smalll_pc 0,697 0,998 0,260 0,097
small6_pc 0,821 0,997 0,361 0,256
small10_pc | 0,786 0,998 0,331 0,278
big30_pc 0,917 0,997 0,583 0,666
bigd0_pc 1 0,996 0,733 0,768
big50_pc 1 0,997 0,556 0,461
COCO-1
Dataset | Class accuracy No object accuracy ~ Object accuracy m.APs
smalll_pc 0,697 0,998 0,437 0,253
small6_pc 0,866 0,997 0,494 0,400
small10_pc | 0,855 0,997 0,441 0,374
big30_pc 0,875 0,997 0,417 0,370
bigd0_pc 0,8 0,996 0,533 0,280
big50_pc 0,667 0,996 0,333 0,111
VOC-78
Dataset | Class accuracy No object accuracy ~ Object accuracy m.APs
smalll_pc 0,874 0,999 0,437 0,374
small6_pc 0,919 0,998 0,526 0,493
small10_pc | 0,917 0,997 0,507 0,474
big30_pc 1 0,995 0,917 0,925
bigd0_pc 1 0,995 0,933 0,963
big50_pc 1 0,993 1 0,903
F Datasets used in experiments
Experiment 1
Dataset | Number of images ~ Object size threshold Classes Distribution of classes
Filtered VOC 4302 None Person, car 56/44
Filtered COCO 1 4500 None Person, car 59/41
Filtered COCO 2 1200 None Person, car 60/40
Experiment 2
Dataset \ Number of images Object size threshold Classes
smalll 676 <0,01 {vOoC} | {coco} -
small6 2868 <0,06 {VOC} | {COCO} -
big50 1005 >0,50 {VOC} | {COCO} -
Experiment 3
Dataset \ Number of images Object size threshold Classes
smalll_pc 131 <0,01 Person, car -
small6_pc 281 <0,06 Person, car -
small10_pc 330 <0,10 Person, car -
big30_pc 81 >0,30 Person, car -
bigd40_pc 59 >0,40 Person, car -
big50_pc 40 >0,50 Person, car -

	Introduction
	Problem
	Why is this important?

	Related work
	Data
	Preprocessing
	Filtering

	Method
	What is YOLO?
	YOLO Architecture
	Multi-Scale Detections
	Predictions
	Anchor Boxes
	Filtering Predictions

	Experiments
	YOLOv3's measures of precision
	Experiment 1: YOLOv3 trained and tested on different datasets
	Results

	Experiment 2: YOLOv3 ability to detect smaller sized objects
	Results

	Experiment 3: COCO-1 and VOC-1's ability to detect smaller sized objects
	Results

	Conclusions
	
	YOLOv3 Architecture
	YOLOv3 Architecture
	Filtering Predictions

	Experiment 1: Performance on COCO and VOC datasets
	
	

	Trained network images
	VOC-1
	COCO-1

	Quantitative analysis of COCO and VOC
	
	

	Experiment 2 and 3: Results
	
	

	Datasets used in experiments

